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Abstract 
 

Cooperative spectrum sensing has been considered as a promising approach to improve the 
sensing performance in distributed cognitive radio networks. However, there may exist some 
selfish secondary users (SUs) who are unwilling to cooperate. The presence of selfish SUs 
could cause catastrophic damage to the performance of cooperative spectrum sensing. 
Following the social perspective, we propose a Social Tie-based Incentive Scheme (STIS) to 
deal with the selfish problem for cooperative spectrum sensing in distributed cognitive radio 
networks. This scheme inspires SUs to contribute sensing information for the SUs who have 
social tie but not others, and such willingness varies with the strength of social tie value. The 
evaluation of each SU’s social tie derives from its contribution for others. Finally, simulation 
results validate the effectiveness of the proposed scheme. 
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1. Introduction 

With the rapid growth of wireless communication technology and the huge demand of the 
capacity for wireless applications, the wireless frequency spectrum has become a scarce 
resource. However, a large portion of the assigned spectrum is not yet utilized efficiently. 
According to Federal Communications Commission (FCC) [1], temporal and geographical 
variations in the utilization of the assigned spectrum range from 15% to 85%. To solve the 
contradiction between spectrum scarcity and low spectrum utilization, cognitive radio 
networks (CRNs) [2] have been proposed to make effective use of the electromagnetic 
spectrum by opportunistically using the spectrum of the licensed users. The licensed users are 
called primary users (PUs) and the users of the CRNs are known as secondary users (SUs).  

Cooperative spectrum sensing (CSS) is one of the key technologies in the realization of 
CRNs, since it enables SUs to fill in unused spectrum bands without causing harmful 
interference to PUs. The main idea of CSS is to enhance the sensing performance by exploiting 
the spatial diversity in the observations of spatially located SUs [3]. By cooperation, SUs can 
share their sensing information for making a combined decision more accurate than the 
individual decisions [4].  

However, most of the existing CSS schemes assume all the SUs are willing to collaborate. 
In reality, some selfish SUs may refuse to provide the sensing results to save energy or 
transmission time, while still enjoying those from others [5]. Such kind of selfish behaviors 
may seriously degrade the performance of CSS. To put it concretely, a selfish SU may be 
reluctant in the cooperation that is not directly beneficial to it, which could make a well 
designed CSS scheme useless. Therefore, how to efficiently and effectively resolve the 
selfishness problem for CRNs has become a very challenging issue to achieve better 
performance of CSS. 

To stimulate the possible selfish users to contribute, two forms of incentives [6] can be 
considered: (1) credit-based (one pays to help and is paid to contribute), and (2) differential 
service approach (users that contribute more get more help). The monetary payments scheme 
requires a fictitious currency. However, due to the lack of central authority, it is hard to track 
various cooperative sensing and charges for them using micropayments in distributed CRNs.  

The differential service approach seems more promising as an incentive scheme. Recently, 
efforts have been made to this approach in CSS using game theory. In [7], the authors modeled 
CSS as an N-player horizontal infinite game and they proposed to use Carrot-and-Stick 
strategy, which results mutual cooperation as the Nash equilibrium of the game. In [8], the 
authors proposed mixed strategy Nash equilibrium as the solution of the non-cooperative 
game among SUs for cooperative spectrum sensing. In [9], the authors formulated the 
interactive decision on frequency of selfish SUs as a noncooperative game, and Nash 
equilibrium corresponds to a desired frequency profile. Then, they propose a novel distributed 
algorithm to lead the SUs to achieve a desired frequency selection outcome. In [10], the 
authors modeled cooperative sensing framework as an evolutionary game in which each SU 
makes decision based on its utility history, and takes an action more frequently if it brings a 
relatively higher utility. However, most of the existing game theory frameworks depend on the 
assumption that the game between a pair of players is directly played for infinite times. Due to 
mobility or changes of environment, users will periodically update their partners to achieve 
better performance, which means that any pair of players is supposed to play for only finite 
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times with the termination time are either known or can be estimated by both players [11]. In 
addition, these game theory frameworks are mostly related on the central networks and 
involve complex mathematically analysis and computation. In distributed CRNs, SUs 
generally have limited computation capability and thus complex game theory is not a suitable 
solution. 

In this paper, we develop the differential service approach from a different point of view. It 
is worth noting that most SUs are rational and strategic users in the CSS environment. From 
the social perspective, an SU is willing to help the SUs who have social tie, because he got 
help from them in the past or will probably get help from them in the future. Conversely, the 
selfish users who don’t help others won't get any help. It should be treated as a design metric to 
measure this kind of user demand. Based on this, we propose a Social Tie-based Incentive 
Scheme (STIS) to deal with the selfish problem for cooperative spectrum sensing in distributed 
CRNs.  

The organization of this paper is as follows: In section 2, preliminaries related on CSS are 
described. In section 3, we show how social tie are measured in CSS and construct our STIS 
scheme in a distributed manner. Simulation analysis of the proposed scheme is given in 
Section 4. Finally, we conclude the paper in section 5. 

2. Preliminaries 
In the distributed CRNs, SUs cooperate with each other to achieve a CSS exchange in the 

self-organizing manner due to the lack of centralized control. In the CSS environment, each 
SU plays two roles, the role of initiator SU enjoying sensing information and the role of 
cooperating SU providing sensing information.  

The CSS process can be modeled as a parallel fusion network [12]. As shown in Fig. 1, each 
cooperating SU detects the signal of PU individually via the sensing channel, and then reports 
their sensing information via the reporting channel to SU1 who combines the received 
individual sensing information and determines the presence of PU. A sensing channel is the 
selected licensed frequency band where a physical point-to-point link between the PU 
transmitter and each cooperating SU for observing the primary spectrum, and a reporting 
channel is a control channel where a physical point-to-point link between each cooperating SU 
and the initiator SU for sending individual sensing information [3]. It can be seen that the two 
types of channels are given by the network. Thus, the CSS process among SUs seems not 
waste any more spectrums. 

PU

SU2

SUN

SU1

d2

decision

dN

Cooperating SUs

Individual sensing

Individual sensing
 

Fig. 1.  A round of the CSS exchange launched by SU1. 
During the process of individual sensing, the individual sensing information of each 

cooperating SU is determined. di indicates the sensing information of the i-th cooperating SU, 
which is expressed as: 
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                                                                (1) 

 
where H0 and H1 denote the hypothesis of the absence and the presence of the PU signal, 
respectively. 

There are several advantages offered by cooperative spectrum sensing over the individual 
sensing [13]. In the case of deep shadowing and multipath fading, it is very difficult for an SU 
to distinguish a white space from a deep shadowing effect. Therefore, an individual spectrum 
sensing system may not work well in this case, and a cooperative scheme can solve the 
problem effectively by sharing the spectrum sensing information among SUs. However, if the 
SUs are selfish, they will not collaborate with each other for cooperative sensing without any 
incentive [14]. Such kind of selfish behaviors may seriously disrupt the cooperative sensing, 
thus some incentive based solutions are expected to encourage the selfish SUs to contribute 
more to CSS. Therefore, designing an effective incentive scheme is our main work in this 
paper. 

      3. Proposed Incentive Scheme 
As like wireless networks, CRNs can be also deployed in centralized and distributed 
architecture. Unlike centralized networks, distributed CRNs lack a central authority to make 
the cooperative decision. In this case, SUs communicate among themselves and converge to a 
unified decision on the presence or absence of PUs. Therefore, the CSS exchange of 
distributed CRNs has attracted increasing attention. Specially, there is litter literature 
investigating the selfish behaviors of SUs for distributed CRNs recently. In this paper, we 
implement our work in distributed CRNs. 

3.1 Design Philosophy 
The cognitive radio paradigm imposes human-like characteristics (e.g., learning, adaptation 
and cooperation) in wireless networks [15]. Specially, the self-organizing and distributed 
natures of distributed CRNs offer an ideal environment for selfish behaviors.  

 
Fig. 2. Functional modules in the STIS scheme 
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To capture user selfishness in a more realistic manner, there are two observations from the 
social perspective [16]: 1) A user cooperates with others with whom he has social tie, because 
he would get help as a return; 2) For those with social tie, a user may give different preferences, 
namely, provide better service to those with stronger tie than those with weaker tie. 

In the process of CSS, social tie may affect SUs’ behaviors. For instance, an SU is reluctant 
to report sensing information to those without social tie value, and he gives preference to those 
with stronger social tie value. Therefore, our underlying philosophy is that social tie should be 
treated as a design metric to measure social tie and inspire selfish SUs. In view of this analysis, 
we propose the STIS scheme to resolve the selfish problem for CSS. 

In this paper, we design our STIS scheme, as shown in Fig. 2, with three functional modules, 
such as the social tie evaluation module, data management module and execution protocol 
module. The social tie evaluation module is employed to evaluate the social tie. The data 
management module (as shown in Fig. 3) is used to manage and update social tie data for each 
SU in a distributed CRN by invoking the first module. The execution protocol module (as 
shown in Fig. 4) is in charge of implementing the STIS scheme in a distributed manner. 

3.2 Social Tie Evaluation 
From the angle of game theory, a selfish SU wants to get more gains when he pays. Thus, 
social tie can be viewed as the user utility of an SU, which is a design idea from the social 
perspective to suppress selfish behaviors. Once an SU often helps other SUs by contributing 
its sensing information, it would get a good social tie value. Or else, he would get a bad social 
tie value. With a good social tie value, this SU can request other SUs to help him easily. For a 
specific SU, “other SUs” may refer to the SUs who want to enjoy sensing information from the 
specific SU when this SU plays the role of cooperating SU. Or else, “other SUs” may refer to 
the SUs who provide sensing information to the specific SU when this SU plays the role of 
initiator SU.  

In our STIS scheme, we find that the evaluation of social tie depends on four parameters. 
Take i-th SU (SUi) as an example, its social tie value can be defined as: 

 
( ), , ,h

i i i i is f r q ω σ=                                                       (2) 

 
 ri denotes the number of “helping” performed by SUi. The more SUi helps other SUs, 

the higher social tie value SUi will get. 
 qi denotes the number of “helped” queried by SUi. This parameter is inversely 

proportional to the evaluation of social tie. If SUi often queries CSS help from other 
SUs rather than contribution, its social tie value will be reduced. 

 ωh
i is the reward index to SUi at time h when he participates in CSS. Sening the primary 

spectrum would cause a certain cost consumptions. To stimulate SUi to help other SUs 
via CSS, a reward index related on cost consumptions should be considered in the 
evaluation of social tie. 

 σi is the penalizing parameter to the evaluation of social tie. In order to enhance social 
tie, some SUs may send false sensing information. The more SUi reports false sensing 
information, the higher penalizing parameter SUi will get, and thus leading to a rapid 
reduction in si. 

The two parameters (ri, qi) can be collected directly during the process of CSS. Then, how to 
evaluate the reward index and penalizing parameter becomes the main task of the social tie 
evaluation module. 
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 Cost-Reward Evaluation 

In distributed CRNs, SUs are generally the wireless devices with limited computation and 
battery energy. We cannot ignore the fact that sensing the primary spectrum would consume a 
certain amount of cost, such as time, energy and memory. The more an SU participates in CSS 
for other SUs, the more cost he will consume. As the cost of sensing increases, some diligent 
SUs may tend to contribute nothing. In this case, a cost-reward mechanism is essential in 
social tie evaluation to inspire contribution. 

Let Oh
i={oh

i1, oh
i2, …, oh

im} denote the set of cost spent in sensing the primary spectrum by 
SUi at time h. The reward index of SUi in regard to participation of CSS can be estimated by its 
consumption at time h. 

1

hm
ijh

i
j ij

o
o

ω
=

=∑                                                                          (3) 

 
where m is the number of cost spent by SUi and oij is the total capacity hold by the wireless 
device, such as overall run time, overall battery energy and overall computation memory.  

To ensure the reliable estimation of ωh
i, two constraints should be considered in the 

cost-reward mechanism: 1) SUi cannot estimate ωh
i by himself, because it would fake this 

index to maximize its social tie value; 2) The reward index must be tamper-resistant during the 
transmission, or else anyone may slander SUi by tampering this index. Therefore, a small 
software is required in the wireless device to measure Oh

i and the total capacity synchronously 
as SUi sensing the primary spectrum. This software, uncontrolled by SUi, then estimates the 
reward index ωh

i that is set as read-only and sent automatically as well as the sensing 
information provided by SUi. 

For SUi, its social tie value will be increased by the reward index if he often participates in 
CSS. Thus, the cost-reward value after ri-th sensing performed by SUi can be represented as: 

, 1h
i i i iw r h rω= ∗ ≤ ≤                                                     (4) 

 
 Penalizing Parameter Evaluation 

It is possible that some SUs may maintain a good social tie value by sending false sensing 
information. To suppress such fraudulent behavior, two measures can be adopted in the STIS 
scheme. First, as we know from the cost-reward evaluation metric, the cost data are measured 
in the processing of sensing the primary spectrum. So, the behavior of SUi can be detected to 
as fraudulent if ωh

i is not received automatically as well as the sensing information. To insure 
the accurate final decision of the primary spectrum from CSS, such false sensing information 
should be discarded. 

However, an SU may also send false sensing information to misguide other SUs that the PU 
signal is present if he likes the primary spectrum after individual sensing. Given this, the 
second measure is presented following the view of punishment is. Assuming ri

C be the number 
of correct sensing information reported by SUi, the penalizing parameter σi is defined as:  

 

( )1

C
i

i C
i i i

r
r r r
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+ −

                                                         (5) 

 
This penalizing parameter is used as a multiplicative decay coefficient to reduce the social 
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tie value of SUi. The index (ri -ri
C) denotes the number of false sensing information reported by 

SUi. Obviously, the more SUi reports correct sensing information, the lower reduction will get 
in si, and vice verse. Specially, σi will accelerate the growth of si when ri -ri

C=0. 
Of course, the negative effect caused by a handful of false sensing information on final 

decision is limited sometimes in CSS. For example, the Majority fusion rule requires at least a 
half of SUs to report H0 (H1) before the final decision H0 (H1) is determined [3]. That does not 
mean the punishment to social tie value is not important. Without punishment, more and more 
SUs would fake sensing information to increase their social tie value, resulting in seriously 
hurting the performance of CSS.  

Then, another question is how to identify the correct sensing information. We have already 
known that an initiator SU requests a CSS exchange under the condition of failing to sense the 
primary spectrum. In the process of CSS, it is impossible to identify the correct sensing 
information without prior knowledge, but an initiator SU can differentiate between the correct 
and false sensing information when the final decision is determined. Afterwards, the false 
sensing information will lead to a rapid reduction in cooperating SUs’ social tie value. It is 
difficult for those SUs to get CSS help from others when their social tie value decay below a 
certain value. It also shows that the punishment is very essential to social tie evaluation. 

 General Evaluation Metric 

By introducing the reward index and penalizing parameter into the evaluation of social tie, 
the social tie value of SUi can be evaluated as:  

, 1h i
i i i i i

i

rs r h r
q

ω σ= ∗ + ≤ ≤                                            (6) 

 
Similarly, we can evaluate the social tie value of each SU in a distributed CRN and 

consequently derive a social tie vector: 

[ ]1, , ,i nS s s s =  

It is necessary to normalize the social tie value in S. Otherwise, some SUs may be assigned 
arbitrarily high social tie value (much more than 1), and arbitrarily low local social tie (much 
less than 1) to another SUs, which brings a difficulty in comparing them. To ensures that all 
social tie value lie in [0, 1], the social tie value are normalized with max(S) which can be 
updated adaptively by the following procedure. 

Procedure Updating max(S) 
Input: S 
Output: max(S) 
  1: At h=0, initialize max(S)=1; 
  2: for h≥1 do 
  3:   for each SUi do   
4:     if (si>max(S)) then 
5:       max(S)=si; 
6:     end if 
7:   end for 
8:   h++; 
9: end for 
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Such factor can inspire SUs to learn from the SU with best behaviors. If selfish SUs often 
contribute nothing to others, he will get less normalized social tie than other SUs. For SUi, its 
social tie value can be normalized as follows:  

max( )
′ = i
i

ss
S

                                                             (7) 

 
 If si´>=δ, SUi will be looked as a non-selfish SU, and other SUs will share sensing 

information with SUi. 
 If si´<δ, SUi will be looked as a selfish SU, and other SUs will not share sensing 

information with SUi .  
 

It can be seen that the key to deciding whether an SU is selfish depends on the threshold of 
social tie value (δ). In order to guarantee the performance of CSS, δ should satisfy three 
requirements: 1) Pd (0≤Pd≤1) represents the probability of detecting the presence of PU singal 
under hypothesis H1 [17], and hence δ needs to be able to inspire SUs to keep a higher Pd by 
providing correct sensing information; 2) δ should be a moderate value between 0 and 1 in 
correspondence with the normalized social tie value; 3) δ can also inspire SUs to maximize the 
throughput of a netwwork, which is viewed as the network utility of all SUs in a time slot. 
Such index reflects the degree of contribution that all SUs provide sensing information via 
CSS. To stimulate cooperation among SUs, we can set the minimum required for the 
throughput in a time slot to adjust the size of δ . Here, the time is divided into L time slots of 
equal length, where L is a large positive integer. The throughput is defined as the ratio of the 
number of “helping” performed by all SUs to the number of “helped” queried by all SUs in a 
time slot. Let Ψ denote the set of all SUs in a network, the j-th throughput can be calculated as: 

 

, 1
i

i
j

i
i

r
t j Lq

∈Ψ

∈Ψ

= ≤ ≤
∑

∑                                                (8) 

 
Based on the above three requirements, we use the following function for δ: 
 

( )max

dP
T

S
 

=   
 

δ                                                                  (9) 

 
The detection probability Pd is recognized as the exponential weight to determine the 

threshold dynamically. A higher value is required in Pd, a larger threshold is determined. To 
avoid being identified as selfish, SUs must report more correct sensing information in the 
process of CSS. Meanwhile, a higher value in T also means that SUs must often participate in 
CSS at every time slot. In the STIS scheme, T is the minimum required for the throughput in a 
time slot. When some SUs are not enthusiastic about helping others in a time slot, T is set to a 
higher value aiming to motivate them to contribute sensing information. After they behave 
well, T is decreased to allow more SUs to obtain sensing information via CSS. Once the selfish 
behaviors of some SUs reappear, T is adaptively adjusted to a higher value again. 
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3.3 Data Management 
Without a central database, social tie data need to be stored among SUs in a distributed manner. 
Fig. 3 gives a sketch of the system architecture of the data management module.  

Distributed CRN

SU2

...

SU1

SUn SUi

...

Feedback 
Collection

Data 
Update

Social Tie 
Database

Data Manager

 
Fig. 3. System architecture of data management module 

 
The callout shows that each SU has a data manager that is responsible for collecting the 

feedback message related to the SU and updating its social tie data, in which a small database 
(as shown in Table 1) stores the social tie data.  

 
Table 1. Description of Social tie database 

ID Number of 
“helping” 

Number of 
correct sensing  

Number of  
“helped” 

Total 
cost-reward 

Social tie 
value 

SU1 
SU2 
… 

SUn 

r1 
r2 
… 
rn 

r1
C 

r2
C 

… 
rn

C 

q1 
q2 
… 
qn 

t1 
t2 
… 
tn 

s1 
s2 
… 
sn 

 
Specially, due to the limited computation capability, each SU cannot store the social tie data 

for all SUs of the whole network. Only when an SU becomes some SUs’ data manager can the 
SU store their social tie data. 

In our approach, an SU's data manager is located by mapping a unique ID of the SU. Take  
SUj as an example, we can find the ID of its data manager by the following map function.  
 

( )mod 1 , 1& & & & 0= × + > + ≠ ≠i j i j iID k ID n k n ID ID ID                              (10) 
 

where k is an integer generated by the network and is distributed to each SU uniformly. 
As shown in Fig. 3, let SU1 be a requestor for a CSS exchange and SU2 is one of SU1’s 

possible cooperating SUs. Assuming ID1=1, k=13 and n=6. Then，1*13 (mod 6+1)=6.With 
the map function, the unique ID of SU1, ID1, is mapped into 6. Thus, SU6 becomes SU1's data 
manager who sends SU1's social tie value to SU2 and updates the q1 value by adding 1 in its 
social tie database. Similarly, if k is assigned to several values, several data mangers of SU1 
can be found by different k value. 

According to the social incentive scheme, if SU1's social tie value is greater than the 
threshold, SU2 will join in the CSS exchange launched by SU1 and provide sensing information 
to SU1, and vice verse.  

In the module, to cope with the inherent dynamics of a distributed CRN, several data 
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managers are responsible for the social tie value of SU1. If a cooperating SU needs the social 
tie value of SU1, he can query all SU1’s data managers for the value.  

In addition, a majority vote on the social tie value should be adopted to settle the conflicts 
among the data managers. For example, there are five data managers of SU1, in which three of 
them think that SU1 is active and two of them think that SU1 is selfish. According to the 
majority vote, SU2 decides that SU1 is active. This is because the truth is often in the hands of 
the majority.  

3.4 Execution Protocol 
It is important to note that the effectiveness of supporting social tie in CSS depends not 
only on the factors and metric for evaluating social tie, but also on the implementation of 
the STIS scheme in a distributed CRN.  

When an initiator SU tries to use a primary spectrum, at first this SU needs to check whether 
the PU signal band is free or in using. In the STIS scheme, the execution protocol is 
responsible for the interaction between the initiator SU and its cooperating SUs as well as their 
data managers. From Fig. 4, it can be seen that the whole protocol is composed of three steps. 

Initiator SU Cooperating SUs Data mangers(X/Y)

Step 1
Poll

Provide or Reject Reply

Query

Feedback

Step 2

Step 3

X

X

Y
 

Fig. 4. Message flow for the Execution Protocol 
 

Step 1. An initiator SU, such as SUi, sends a Query message (ID<PU>, r, t) to request a CSS 
exchange related on a primary spectrum. A random number r in the message is added to mark 
the CSS action, and h is the current system time. Meanwhile, the cooperating SUs broadcast a 
Poll message (SUi, r, h) to the initiator SU’s data managers (X).  
Step 2. Upon receiving the reply message(si, qi, r, ωh

i), the cooperating SUs check whether 
SUi’s social tie value outweighs δ . For si>δ, the cooperating SUs provide sensing information 
to SUi, and vice verse. Of course, the STIS scheme also should give the newcomers one chance. 
For si=0&&qi=1, SUi can referred to as a newcomer. In this case, the cooperating SUs would 
share its sensing information to SUi. Afterwards, if SUi would like to get help from again, he 
must continue to help others. 
Step 3. The initiator SU sends the feedback message (fb(cooperating SUs), r, ωh

i) to the 
cooperating SUs’ data managers (Y). Take a cooperating SU as an example, such as SUj, if he 
provides corrected sensing information, fb(SUj)=(rj

C+1). Its data managers will update the rj
C 

value by adding 1 in their social tie database. Otherwise, fb(SUj)=(rj
C+0). SUj's data managers 

will not update the rj
C value. Also, upon receiving the feedback message {fb(SUj)}, SUj's data 

managers will update the rj value by adding 1.  
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      4. Simulation Analysis 

We would perform four simulations to validate the STIS scheme and show its effectiveness, 
and robustness. 

4.1 Simulation Setup 
We consider a distributed CRN with 60 SUs and 5 PUs, where the SUs are split into two types: 
non-selfish SUs and selfish SUs. The percentage of selfish SUs is set to 50%. 

The behavior pattern for good SUs is to always cooperate in CSS and provide honest 
sensing information. While it is a challenging task to model SUs’ selfish behavior realistically, 
we start with two selfish behavior patterns to study the robustness of STIS, namely, active 
setting and inactive setting. In the active setting, selfish SUs would share their sensing 
information with incentive measures. In the inactive setting, selfish SUs may maintain a good 
behavior by contribution, and then reject to share their sensing information as their social tie 
value outweigh the threshold δ .  

The simulations are executed by cycle-based fashion. At each cycle, all SUs are selected to 
perform CSS random exchanges with each other. After a few cycles, an incentive network 
topology is gradually formed by social tie value. The participating SUs then use the STIS 
scheme to perform CSS exchanges at each cycle, and update social tie data on the 
corresponding SUs. In this simulation fashion, the h-th cycle denotes time h and a time slot 
consists of 8 cycles. 

4.2 Simulation Results 
The first three simulations validate the effectiveness of STIS in the active setting by compared  
with a latest evolutionary game-based incentive scheme [10] (hereinafter "EGIS"). Finally,  
we evaluate the robustness of STIS by observing the variation of social tie value at a selfish SU  
who behaves two selfish behavior patterns respectively including the active setting and the  
inactive setting.  
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STIS with δ=0.2
STIS with δ=0.5
STIS with δ=0.8
EGIS

 
Fig. 5. Throughput of STIS vs. EGIS  

The throughput of STIS is compared with EGIS in the first simulation. To acquire an ideal 
throughput in STIS, we set the detection probability Pd to 0.98 and then vary the T factor to 
slide δ  dynamically in [0.2, 0.5, 0.8]. As shown in Fig. 5, both STIS and EGIS can enhance the 
throughput effecively. Specially, STIS behaves better than EGIS when δ=0.8. As we know 
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from section 3.1, δ is correlative to the T factor that is the minimum required for the 
throughput in a time slot. Thus, a larger δ can stimulate some selfish SUs to change their past 
behaviors more easily, and then share sensing information to improve their social tie value. 
However, if the T factor is set to a lower value, some selfish SUs would be not interested to 
share sensing information since they can make their social tie value easily outweigh δ . Of 
course, EGIS modes CSS as an evolutionary game in which each SU participates in CSS based 
on its utility history, and takes an participation more frequently if a relatively higher utility 
achieves. In this case, EGIS can also maintain an ideal throughput to some extent. 
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Fig. 6. STIS vs. EGIS under the different percentage of selfish SUs 

Next, the threshold δ  is fixed at 0.8. We vary the percentage of selfish SUs in the second 
simulation to observe the throughput of STIS compared with EGIS in the tenth time slot. As 
shown in Fig. 6, we can also validate that STIS is better than EGIS due to its strict requirement 
for the throughput. 
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Fig. 7. STIS vs. EGIS under the different probability of incorrect sensing 

In the third simulation, we find that the incorrect sensing behavior can hurt the performance 
of STIS and GEIS seriously. Fig. 7 shows that the number of correct sensing decreases with 
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the increase of the probability of incorrect sensing. Fortunately, STIS decreases slower since 
the penalizing parameter is introduced to suppress such fraudulent behavior, whereas the curve 
of EGIS drops rapidly without punitive measures. Although the curve of STIS turns bad after 
the probability of incorrect sensing outweighs 0.5, such extreme case appears rarely in the CSS 
environment driven by STIS. In our scheme, the evaluation of social tie value for an SU is 
highly dependent on its histroy of correct sensing. The less number of correct sensing will lead 
to a lower social tie value. Thus, the SUs with fraudulent behavior can get nothing from CSS.  

We have known that the social tie value is the key factor in our STIS scheme to inspire the 
contribution of selfish SUs. The fourth simulation shows the variation of social tie value at a 
selfish SU in the active setting and the inactive setting respectively. As shown in Fig. 8(a), a 
selfish SU’s social tie value increase gradually by 30 cycles in the active setting, and then 
tends to stable. In the simulations, the parameters of Eq.(6) and the max(S) of all SUs are used 
to evaluate each SU’s social tie value at different cycles. The reward index of each SU in 
regard to participation of a CSS action is assumed to 0.01. Such index can boost the social tie 
value with the increase of correct sensing. Since the selfish SU persistently reports correct 
sensing information in the active setting, its social tie value normalized by max(S) will tend to 
1 along with cycles. 
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Fig. 8. Variation of social tie value at a selfish SU. (a) Active setting. (b) Inactive setting 
 

Is its social tie value will decrease if the selfish SU rejects the contribution when its social 
tie value is greater than δ ? We can see in Fig. 8(b) that the social tie value will decrease 
gradually once a selfish SU does not provide sensing information. In the inactive setting, as a 
selfish SU declines to participate in CSS, its reward index and the number of correct sensing 
information will stop to rise. Then, its social tie value will decrease with the increase of its 
query corresponding to CSS. After normalization, its social tie value tends to 0. 

The fourth simulation also shows that, no matter how δ is set, a selfish SU’s social tie value 
will tend to 1 by its persistent sensing behaviors in the active setting. However, in the inactive 
setting, the social tie value only arrives at the given δ  instantaneously and then drops sharply 
without any contribution. 

5. Conclusion 
In this paper, we propose an incentive scheme based on social tie (STIS) for cooperative 
spectrum sensing in distributed CRNs. Following the social perspective, this scheme inspires 
SUs to contribute sensing information for the SUs who have social tie but not others, and such 
willingness varies with the strength of social tie value. The evaluation of social tie is given by 
this underlying philosophy. Meanwhile, we design a data management module and execution 
protocol module to implement the STIS scheme in a distributed manner. Through the 
simulation analysis, we have demonstrated that the STIS scheme can effectively inspire selfish 
SUs to contribute sensing information for increasing their social tie value. 
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