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Abstract 
 

Compressed sensing is a novel technology used in the field of wireless communication and 

sensor networks for channel estimation, signal detection, data gathering, network monitoring, 

and other applications. It plays a significant role in highly secure, real-time, well organized, 

and cost-effective data communication in smart-grid (SG) systems, which consist of multi-tier 

network standards that make it challenging to synchronize in power management 

communication. In this paper, we present a multi-layer communication model for SG systems 

and propose compressed-sensing based data transmission at every layer of the SG system to 

improve data transmission performance. Our approach is to utilize the compressed-sensing 

procedure at every layer in a controlled manner. Simulation results demonstrate that the 

proposed monitoring devices need less transmission power than conventional systems. 

Additionally, secure, reliable, and real-time data transmission is possible with the 

compressed-sensing technique. 
 

Keywords: Compressed sensing, home area network, multi-layer data communication, smart 

grid, wireless sensor network, zigBee 
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1. Introduction 

Smart Grid (SG) is a promising technology that includes an auto-balancing, self-monitoring 

power control system and taking advantage of advancements in Information Technology (IT) 

and telecommunications that integrates various generation concepts and technologies. It 

explores two-way communication technology, smart metering, updated control theory, 

dynamic optimization theory and machine-to-machine (M2M) communication in order to 

ensure the capabilities of superior network, efficient, secured distribution of energy, flexible, 

economical and cyber safety. The accurate control and management theory make an SG more 

reliable to reach in its goal. Moreover, in SG communications there are a number of devices 

that are exploited for the supervision and feedback information of grid, which requires a 

significant amount of device power. In this respect, intelligent and low cost monitoring and 

control systems enabled by online sensing technologies are essential for maintaining the safety, 

reliability, efficiency and uptime of an SG [1-3]. 

         A home area network (HAN) is one of the most essential subsystems in an SG to manage 

the on-demand power requirements of end-consumers. There is an urgent need for 

cost-effective wireless monitoring and diagnostic systems for HAN that improve system 

reliability and efficiency by optimizing the management of electric power systems. Therefore, 

ZigBee plays an important role as a new wireless standard, which targets to a low power, low 

data-rate, and short-range wireless data transformation [4-7].  

         Fundamentally, compressed sensing (CS) offers a new method of compression and 

coding in order to minimize the storage and cost. This innovative method shows that sparse or 

compressible signals can be recovered precisely from a small number of random linear 

projections that contains sufficient information. As the information of power consumption 

does not change in all the home together as well as it does not change rapidly in the order of 

milliseconds, which shows the sparsity of data. Consequently, this phenomenon leads more 

adaptive opportunity to transfer the information in SG system through CS methodology. A 

number of approaches of utilization of CS technique in wireless sensor network and SG have 

been have been reported in the previous works [8-12]. M. Balouchestani et al. represented a 

survey of CS theory and showed a comparative analysis of WSN with CS and without CS [8]. 

Application of CS theory was described in [9]. X. Wang et al. explained CS based random 

routing for multi-hop WSN [10]. Moreover, P. Zhang et al. [11] did Performance and delay 

analysis of WSN by using CS. In addition, compressed meter reading in SG system was 

proposed by H. Li et al. [12]. However, the task of transmitting information of electricity 

consumption from a Smart Meter (SM) to the central controller is tricky due to the following 

major facts: 

 

Monitoring Device Power and Lifetime  

An SG system consists of a large number of devices that store, gather, and transmit accurate 

information about electricity consumption between the generation units and the end users. 

More accurate management of data transmission enables more competent supervision with 

lower transmission power, thereby increasing the lifetime of devices [3, 13-14]. 

 

Spectrum Scarcity  
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Spectrum is a limited resource, so wireless devices need to transmit data to other devices 

efficiently. Traditional methods are not adequate to achieve optimal spectrum management 

because of inevitable change of spectrum requirements to transmit data [15-16]. 

 

Delay Sensitivity 

Power load information should be updated in real time because electricity consumption 

changes frequently. Otherwise, any delay of data transmission in the SG system would make 

the whole system futile [17]. 

 

Security Requirement  

An SG communication network is an aggregate of multiple networks with varying levels of 

communication and coordination between power providers, operators, and customers. 

Therefore, an assurance of high security is required for communication in the SG system 

because it is a likely target of sophisticated cyber attacks, which can be launched from any 

vulnerable component in the highly distributed system [18-20]. 

 

        Considering the above challenges, in this paper, we propose a multi-layer version of the 

complete SG system with CS-based [21-23] data transmission offered at every layer. In the 

proposed design, we consider a HAN developed by ZigBee to transmit the 

electricity-consumption information. Moreover, at all layers in the SG system, the 

electricity-consumption information is transmitted in a controlled manner i.e., if there is no 

significant change in the information, it is treated as unchanged or zero. Therefore, CS is 

utilized in a controlled manner i.e., if the information of a node cannot satisfy a certain 

threshold value, it is treated as zero. And, compression is associated with proper routing of the 

nodes in the system. The simulation results illustrate that the proposed method transfers data 

effectively with lower power, in lesser time, and in a more secure manner than the traditional 

method.  

        The rest of this paper is structured as follows. In section 2, the system model is introduced. 

Next, in section 3, CS background and data transmission process is explained, and section 4 

contains simulation results. Finally, conclusions are drawn in section 5. 

 

2. System Model 

The overall structure of the proposed SG model is depicted in Fig. 1, and the constituents of 

the system are described in the following subsections. 

2.1 Home Appliances 

Home appliances are the power-consuming devices in the SG, and they are connected to a 

smart meter. 

2.2 Smart Meter  

A smart meter is a device that is used to collect the electricity-consumption information from 

home appliances. A HAN can be established with home appliances and a smart meter (using 

ZigBee or other devices). Smart meters enable two-way communication between the meter 
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and the central system. Unlike home-energy monitors, smart meters can gather data for remote 

reporting. 

 
Fig. 1. Overall structure of the proposed smart-grid system. 

2.3 Home Area Network  

A HAN is used to collect electricity-consumption information of home appliances and supply 

the information to upper layer. In this paper, the HAN consists of ZigBee and smart devices. 

Because they are superior to other devices (Bluetooth, Wi-Fi, etc.) ZigBee devices are 

preferred for the HAN. A ZigBee system maintains a protocol that was developed particularly 

for wireless devices to ensure low power consumption and a long battery life. A ZigBee device 

can be a full-function device (FFD) or a reduced-function device (RFD). It allows up to 254 

nodes in a network. ZigBee devices are of three types : ZigBee coordinator (ZC), ZigBee 

router (ZR), and ZigBee end device (ZED). ZC and ZR are FFDs. Note that the ZED (RFD) 

cannot relay messages or allow other nodes to connect to the network through it. Therefore, 

ZED consumes less battery power and has a long lifetime. ZigBee supports star, peer-to-peer, 

cluster tree and other network topologies. When compared with Bluetooth or Wi-Fi devices, 

these devices may take only milliseconds to exit their sleep state. M. Balouchestani et al. 
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observed that the Bluetooth and ZigBee protocols consume lesser power (for both 

transmission and reception) than Wi-Fi and UWB technologies, and ZigBee is superior to 

Bluetooth [8]. In addition, ZigBee provides a fair communication range of 10–100 m while 

maintaining significantly low power (1–100 mW) and thus lowers cost. Practical examples of 

this scenario can be easily found in the context of ZigBee networks [4-6]. However, in the 

proposed HAN, home appliances are connected to smart meters. And, smart meters are 

connected to smart devices through ZigBee nodes where smart devices communicate with the 

WAN through a base station (BS). 

 

 

 
Fig. 2. The proposed layer system of the entire system model. 
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2.4 Smart Device 

Although the definition of a smart device can vary, in our SG system, the term smart device is 

used to refer to a multi-functional device that acts as the following: 

 An intelligent device that uses bandwidth in the TV band for its data transmission 

and reception associated with a BS.    

 A home gateway device that continuously supplies electricity demand information 

to the upper layer i.e., a BS. 

2.5 Wide Area Network  

In the proposed system model, the WAN is divided into several clusters. In order to develop a 

standard for cognitive radio (CR), the IEEE 802.22 working group was formed in November 

2004. The IEEE 802.22 standard defines the physical (PHY) layers for a wireless regional area 

network (WRAN) using white spaces within the television bands [24]. 

2.6 Control Centre 

The control centre (CC) receives the electricity-consumption information for processing and 

storage. This data is used to optimize the electrical power generation and/or distribution. 

 

3. Compressed Data Transmission Scheme 

3.1 The Theory of Compressed Sensing 

3.1.1 Compressible Data 

For simplicity, consider a real-valued, one-dimensional, discrete-time signal x with a finite 

length N, which can be viewed as an N ×1 column vector in 
N  with elements x (n), for n = 1, 

2, … , N. Any signal 
Nx   can be expanded in an orthonormal basis 1 2[ , ,.... ]N    

 
as 

follows [23]: 

                                                            

 


N

i

iix

1

                                                     (1) 

where xx T
iii  ,  and T denotes transposition, and   is the coefficient sequence of 

x. Clearly, x and   are equivalent representations of the signal, with x in the time or space 

domains and α in the ψ domain. When only K of i  coefficients are nonzero, K << N, the 

signal x is compressible and has a sparse representation, called K sparse. Sparsity determines 

the efficiency of signal acquisition and decreases the resources needed for storage and 

transmission. 

3.1.2 Sampling and Sensing 

Consider a general linear measurement process that has M < N inner products between x and a 

collection of vectors 1{ }M
j j  in ,j jy x    . Arrange the measurements jy in an M × 1 vector 

y and the measurement vectors T
j as rows in an M × N matrix  . Then, by substituting   
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from (1), y can be written as  

                                                            
  xy

                                                   
(2) 

where y is an M × 1 column vector, and   is a fixed M × N matrix independent of the signal x. 

It is possible to design M measurements (K < M << N) with enough accuracy to reconstruct 

the signal [25], [26].  The measurement matrix must allow the reconstruction of the N-length 

signal y from M < N measurements. Since M << N, generally, recovering x from y is an 

ill-posed problem. However, If y is K sparse and the K locations of the nonzero coefficients are 

known, it can be solved by providing KM  . A well condition for any vector v sharing the 

same K nonzero entries as  and some q > 0 is 

 

                                                     q
v

v
q 


 11

2

2                                              (3) 

The matrix  must deserve the lengths of these particular K-sparse vectors. Satisfying a 

sufficient condition referred to as the restricted isometric property (RIP) is necessary for 

stability of the reconstruction. From the compressed-sensing theory, a K-sparse signal can be 

reconstructed from N measurements if M satisfies the following conditions:  

                                                    NKCM log),(2                                       (4) 

                                                     
M

K
NC  log),(2                                          (5) 

where C is a positive constant. Here, ),(2  is the coherence and is defined as 

                                                
ji

Nji
N 


,max),(

,1
                                   (6) 

For a smaller coherence between  and  , fewer measurements are needed to reconstruct the 

signal [23]. Both the RIP and incoherence can be achieved with high probability by merely 

selecting  as a random matrix. For example, let the matrix elements ji, be independent and 

identically distributed (iid) random variables from a Gaussian probability density function 

with zero mean and variance 
M

1
. Then, the measurements y are merely M different randomly 

weighted linear combinations of the elements of x. An M × N iid Gaussian matrix 

 I can be shown to have the RIP with high probability if (4) is satisfied. Therefore, 

K-sparse and compressible signals of length N can be recovered from only M random Gaussian 

measurements by solving the convex optimization problem with probability )(1 NeO  for 

some 0 if (4) is satisfied. In practice, using a random measurement matrix is a convenient 

choice because a random basis has been shown to be largely incoherent with any fixed basis, 

and M ~ 2K is usually sufficient to satisfy (4).   

3.1.3 Data Restoration 

The signal can be recovered by 1  norm minimization. The recovered signal is denoted as x̂  

and can be written as 

                                                           
1

minargˆ


xx
xy 

                                                  (7) 

It has been shown that 1  reconstruction of K-sparse signals is exact with a high probability if 

it satisfies (4). From (4), it is evident that, if the value of K increases, a higher number of 



2220                             Md. Tahidul et al.: Compressed Sensing-Based Multi-Layer Data Communication in Smart Grid Systems 

measurements are required to satisfy the equation. Moreover, if the value of K increases the 

number of measurements of M required to maintain the compression ratio (
M

K ) increases 

from (5). However, (7) is a convex optimization problem, which can exactly recover the sparse 

or compressible signal with a high probability [21] [22]. Many methods can be used for the 

reconstruction of the compressed signal. Some efficient algorithms are the least square method, 

basis pursuit (BP) [27], chaining pursuit (CP) [28], matching pursuit (MP) [29], and 

orthogonal matching pursuit (OMP) [30].  

3.2 Data Sparsity Condition in the Smart Grid System 

The major reasons for data sparsity in the SG system are as follows: 

 

 In the smart grid, the power-consumption information of each house is transferred to 

the central controller in order of milliseconds. However, the power consumption in 

each house does not continuously vary in the order of milliseconds. For instance, in a 

house the power consumption may change few times in a period of one hour. 

Therefore, for most of the remaining time, the data has zero value. 

 Moreover, because the power consumption in all the houses does not vary 

dynamically at the same time, the number of smart meters simultaneously transmitting 

nonzero information is very small when compared with the total number of meters in a 

particular SG system. 

 Additonally, although electricity consumption changes occur, by considering a 

comprehensive scenario in this paper, we can assume that the change can be negligible 

when there is no significant change in information. Therefore, the smart meters that 

have no significant change in power load will have zero value. 

 

Thus, in a particular network, the number of smart meters simultaneously transmitting is very 

small when compared with the total number of meters. Most of the smart meters have zero data 

i.e. most of the elements of the vector are zero. This verifies the sparsity of smart-grid 

communication and makes compressed sensing reasonable. 

3.3 System Model Layers 

From the system model (Fig. 1), we can observe that a WAN with a CC consists of a number 

of clusters with a BS in every cluster. In this work, we consider P as the number of clusters in 

a WAN. Because every cluster has a BS as a cluster head, the total number of base stations is P 

(a = 1, 2,… , P). Under each BS, the number of SDs is Q (b = 1, 2,…, Q), and each SD has 12 

ZRs through a ZC. Every ZR has 5 ZEDs, and every ZED is physically inserted into an SM. 

Further, the ZED is considered as layer 1, the ZR as layer 2, ZC and SD as layer 3, BS as layer 

4, and CC as layer 5. A tree diagram of the complete system and the layers is given in Fig.  2. 

3.4 Compressed Data Collection and Transmission 

In the proposed system model, each layer receives the compressed data 

(electricity-consumption information) from its lower layer (layer 2 to the CC), gathers data, 

and makes decisions to transmit data to its upper layer. Data reception, gathering, and 

transmission include the following mechanisms: 

 Each parent node collects data from all of its child nodes, and instead of sending 

individual information of each child node, it sends the summation results to its upper 
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layer. 

 Data is sent to the upper layer if there is a significant change in electricity 

consumption. If the data of any node is below a threshold value, the information is 

treated as zero. 

 The required information is transmitted using compressed sensing. 

3.4.1 Compressed Data Transmission at Every Layer 

The data of any layer is denoted by bx  (b = 1, 2,…, N). The random basis vector at each layer 

is denoted by 
,j b (j is the number of row measurements and j = 1, 2,…, M). Every layer uses 

its random basis vector, computes the signals F
j,1
x
1
,F

j,2
x

2
,....,F

j,N
x
N

, and transmits the 

signals to the upper layer. Each upper layer knows the random basis vector of the layer 

immediately below it. We can use the following general formula to demonstrate the reception 

of a signal by any layer from its lower layer:           

                                                                 

y j = F j,bxb
b=1

N

å                                                        (8) 

For N nodes, mathematically we can transform (8) as  

                                                  
























N

Njjjj

x

x

x

y

.

....

2

1

,2,1,

                                                      

 (9) 

From (8) and (9) above, we obtain 
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
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























N
NMMM

N

N

M x

x

x

y

y

y

.

.

...

......

...

...

.

.

2

1

,2,1,

,22,21,2

,12,11,1

2

1

                                     

 (10) 

The data of the second layer (ZR) is denoted by bx  (b = 1, 2, …, 12). The random basis vector 

at each ZED is denoted by ,j b  (j is the number of rows and j = 1, 2,…, M). The ZRs use their 

random basis vectors, compute the signals F
j,1
x
1
,F

j,2
x

2
,...,F

j,12
x
12

,
 
and transmit the signals to the 

ZC. The ZC knows the random basis vector of every ZR. From (10), we get the following 

equation for 12 nodes and M measurements: 

                                                    














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
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




















12

2

1

12,2,1,

12,12,21,2

12,12,11,1

2

1

.

.

...

......

...

...

.

.

x

x

x

y

y

y

MMM

M

                                      (11) 

 

From (11), it is evident that all the data is transmitted by M measurements (M < 12) to its 

parent node (ZR). 
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3.4.2 Data Gathering and Routing Process 

As the previously mentioned, the ZigBee nodes can transmit properly within a 10-m range. 

Therefore, in the proposed HAN, the nodes are assumed to be at an appropriate distance for 

communication with one another. Further, we consider a HAN with a coverage area of 30 m
2
. 

Further, all the nodes (ZRs and ZC as shown in Fig. 3) are kept within a distance of 10 m (on 

average) vertically and horizontally, and three measurements are taken for reconstruction. For 

every ZR, there are five ZEDs, which are not shown for simplicity. The ZEDs cannot be used 

as relay nodes, so they send the information directly to the ZR, which sums up the information 

and checks the threshold value. If the information does not satisfy the threshold value (positive 

or negative), it is treated as zero.  

However, during the formation of the route, every source node (ZR) gathers data of its 

adjacent and other nodes and transmits it to the sink node (ZC). Then, the sink node takes all 

the measurements and gathers the information by removing their random basis vector. The 

data gathering and routing from ZR to ZC are explained below.  

Because the ZigBee devices are in fixed locations, it is more convenient to transmit data from 

them than from a conventional sensor. It is assumed that the ZC maintains total time tT  for 

receiving all measurements from the ZR. Further, it has time synchronization for each 

measurement and sends the signal to ZR after getting each measurement, after which it starts 

sending the next measurement. The change in electricity demand is denoted by   and is 

defined as 

                                                                      
)Pr()Pr( 1 tt TT  

                                                    
 (12) 

Further, the increase and decrease in electricity demand are denoted as 1  and 2 respectively. 

Let us assume that 1  and 2  are the threshold values for the increase and decrease in 

electricity demand respectively. Therefore, for the increase and reduction in electricity 

demand, the signal is 

                                                  














otherwise

if

if

xb

,0

,1

,1

22

11





                                                       (13) 

In other words, the information of any node is treated as zero if it does not satisfy the threshold 

value for electricity demand changes given in (13).  
 

If every route contains only a small number of nodes, as shown in Fig. 3, the projections will 

be sparse. However, because individual nodes do not transport their data separately but 

combine it with the received value for the partial projection, this leads to energy savings. Note 

that a small number of such routes should be sufficient for good reconstruction. For this, an 

algorithm is recommended for three measurements of data transmission from layer 2 to layer 3. 

The data communication process consists of two steps: the network setup phase and the data 

transmission phase. 

 

 Network Setup Phase  

The network setup steps are executed only once before starting the data transmission process 

and need not be repeated every time data is transmitted. In the SG system, the nodes are in a 

static position in the HAN, and the system designer designs the position of the nodes in the 

building to achieve optimal performance. Thus, in this paper, we assume that the nodes are 

placed in a fixed position in the simulation area. Then, the system designer will predesign the 
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routing algorithm based on the position of the nodes so that the RIP condition is satisfied for 

reconstruction. Here, we present a simple routing algorithm. In the routing algorithm, ZC will 

periodically broadcast the location information of the nodes. The adjacent nodes ensure their 

presence by exchanging their location information with node number. And, three source nodes 

are determined for data transmission. However, if any node is damaged or fails the link, the 

route is reestablished. The steps are explained in the next section.  

 
Fig. 3. A data transmission scenario for ZC with 3 measurements 

 

 Data Transmission Phase 

The route formation, data gathering, and taking of measurements are done according to the 

following algorithm: 

 

Algorithm 1  

First measurement: 

1.  Start from the 1
st
 node as the sink node, 

2.  If it has an adjacent node on the left, choose the left node as the next-hop node, 

3.  Else, if it has no left node, then choose the upper node as the next-hop node, and repeat 

steps 1–2 until you reach the sink node. 

4.  Else, choose the right upper node, and repeat steps 1–3 until you reach the sink node. 

 

Second and third measurements: 

5.  For the 2
nd

 and 3
rd

 measurements, start from the 2
nd

 and 3
rd

 nodes respectively and repeat 

steps 2–4. 

 

A typical example is shown in Fig. 3. In the figure the first, second, and third measurements 

are denoted by 1, 2, and 3 respectively. From (11) we can write the following measurement 

matrix for Fig. 3. 
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Consequently, the transmission of data from layer 2 to the other layers follows the same 

procedure as mentioned above. A node in each layer knows the random basis vector of its 

immediate lower layer. After accepting data from its lower layer, every layer recovers the 

original signal and transmits the summation result of all the child nodes. Consequently, for 12 

ZRs, Q number of SDs, and P number of BSs, we can derive the mathematical equation from 

(8), (9), and (10) by replacing the value of N. Furthermore, ZR to SD, SD to BS, and BS to CC 

follow the M measurement matrix for 5 ZRs and Q number of SDs respectively, where M 

depends on the number of nodes and their sparsity level. Also, the threshold values 1  and 2  

indicate a very small amount of data, which does not affect the total electricity-consumption 

information for the corresponding layer, and the value is set for every layer independent of 

other layers. 

3.4.3 Distance Measurement 

Let us assume that the position of a node is ),( srP , the position of its adjacent node is 

P(r , s ), and the central node (collector) position is )~,~( srP . Then, the distance from any node 

to its adjacent node is defined as 

                                                  
22 )()(),( ssrrsrD                                                (15) 

And, the distance from any node to the central node can be written as 

                                                  
22 )~()~(),(ˆ ssrrsrD                                                (16) 

where ),(ˆ),( srDsrD  , Therefore, for direct transmission (from any node to collector node), 

the calculated average minimum distance from any ZR to ZC is ≈ 19.7 m. For our proposed 

scheme, with three measurements (shown in Fig. 3.), the distance is ≈ 5.975 m. 

 

 

4. Performance Evaluation 

4.1 Device Power Monitoring and Achieving Longer Lifetime  

We evaluated the performance of the proposed scheme with various measurements. The 

reconstruction error and required transmission power are shown (Fig. 4, 5, 6, and 7) for 

different measurements and compression ratios. In Fig. 4(a), the reconstruction error versus 

the number of measurements with different sparsity levels for 12 nodes is shown. The 

reconstruction error is defined as (17): 

                                                              
2

ˆ
bbr xxE 

                                                      
 (17) 

where 
b

x is the original signal and ˆ
b

x  is the reconstructed signal. A hundred simulations 

were performed for every measurement, and the least square method (LSM) is used for signal 

reconstruction. There are many useful reconstruction algorithms for compressed sensing such 
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as BP, CP, MP, and OMP. In this paper, however, we have chosen a basic reconstruction 

algorithm i.e., the LSM because the paper is mainly focusing on the application of compressed 

sensing in the SG system. The comparision of reconstruction errors of different reconstruction 

algorithms is out of scope of this paper. 

 

 
Fig. 4(a) 

 
Fig. 4(b) 

 

Fig. 4. Plots of (a) reconstruction error versus number of measurements and (b) reconstruction error 

versus compression ratio. 

 

   From Fig. 4(a), we can observe that the reconstruction error decreases as the number of 

measurements increases. Fig. 4(b) shows the number of measurements (M) in terms of the 

compression ratio (K/M), expressed as percentage, associated with different sparsity levels for 

12 nodes. For different values of sparsity levels: k = 1, k = 2, and k = 3, and for each sparsity 
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level and different number of measurements (M =3, 4, 6, 8, 12), the compression ratio and 

their reconstruction error are verified. This observation can be explained by (4) and (5). 

 
Fig. 5. Required transmission power for different numbers of nodes and measurements. 

 

        The transmission power of wireless sensor nodes depends on the transmission distance 

and the number of bits transmitted. The simulation parameters are given in Table 1. 

 
Table 1. Simulation Parameters 

MAC protocol ZigBee/ IEEE 802.15.4 

ZigBee node types (utilized) ZED, ZR, ZC 

ZigBee device types ZED-full function device 

ZR, ZC-reduced function device 

Total simulation area 30 m
2 

Average distance between nodes (ZR, 

ZC) 

10 m 

Average transmission power ( rrP ) 20 mW  

Average transmission power ( rcP ) 30 mW  

Sparsity (k) 1–3 

Number of measurements (M) 2–12 

 

In this data gathering scheme, we assume that every node is power constrained, and that it can 

transmit to its adjacent node only, and the ZC receives data only from its adjacent ZRs (as 

shown in Fig. 3). The transmission power depends on the transmission distance and the 

number of bits being transmitted over that distance. We assume the following average 

transmission powers: 20 mW for transmission from ZR to its adjacent node ( rrP ) and 30 mW 

for transmission from any ZR to its nearest ZC node ( rcP ). For M measurements, the average 

power (in mW) is denoted by CP  and can be calculated as following:  

 

                                            
))(( rrrcC PMNPMP                                                 (18) 

Let us define,  
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1                                                   (19) 

Therefore, the power gain for any N and M can be denoted as gP and written as 

                                                       

100
2

1 
C

C
g

P

P
P                                                      (20) 

where N is the total number of nodes, and M is the total number of measurements.  

 

        Further, the required transmission power and the transmission power gain are observed in 

Figs. 5 and 6 for different number of nodes with five and four measurements respectively. Fig. 

5 illustrates that the transmission power is the highest for maximum number of measurements 

(M =12) and lowest for minimum number of measurements (M = 2). The transmission power 

gain is shown in Fig. 6. From Fig. 6, it is clear that for a lower number of measurements (M = 

6), a higher gain is achieved with a higher cost of reconstruction error. Moreover, as the 

number of nodes is increased, the gain decreases intuitively because of a relatively lower 

measurement. Because the proposed scheme transmits compressed data instead of individual 

data to the ZC, the device power and lifetime are increased  

        To show the inverse relationship between the reconstruction error and power 

consumption for different values of compression ratio, the performance is shown in Fig. 7 with 

a 3-D plot for 12 nodes and sparsity level K = 2. In Fig. 7, we can observe that the 

reconstruction error decreases as the compression ratio increases. However, more 

transmission power is required to transmit the signal. Therefore, there is a trade-off between 

the reconstruction error and required transmission power to design the system.  

 
Fig. 6. Transmission power gain for different numbers of nodes and measurements. 
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Fig. 7. 3-D plot of transmission power consumption versus reconstruction error versus compression 

ratio. 

4.2 Delay and Spectrum Scarcity Reduction 

The transmission distance in the general and compressed processes is given by (15) and (16). 

From the equations, we can see that, for three measurements, the necessary distance for 

compressed transmission is approximately one-fourth of that needed for conventional-data 

transmission. Moreover, the time synchronization for the conventional and compressed-data 

transmissions can be shown in Figs. 8(a) and 8(b). 

 

 
Fig. 8(a). Time synchronization for the conventional system. 

 

 
Fig. 8(b). Time synchronization for the compressed-data transmission system. 

 

 

Figs. 8(a) and 8(b) illustrate the time synchronization for conventional (i.e., for data 

transmission of N nodes) and compressed-data (i.e., data transmission for N > M 

measurements) transmissions repectively. Thus, the compressed-data transmission system 

plays a significant role in saving time for data gathering over the large SG system. Moreover, 

as shown in Fig. 3, instead of transmitting the information of individual nodes, the proposed 

scheme transmits compressed data. Thus, each node does not transmit to the ZC directly but 

transmits through neighboring nodes. To transmit individual data through the network, the 

system requires a large bandwidth and results in high traffic for synchronization. On the 

contrary, in the proposed compressed-data transmission system, every layer transmits 

compressed data aided by its neighbor node thus saving a significant portion of the spectrum. 

This is possible because in the proposed scheme, we transmit compressed data rather than 

individual data to the ZC. Consequently, this system is a solution for the problems of spectrum 

scarcity and traffic congestion during communication with upper layers. 
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4.3 Secured Data Transmission 

As shown in (10), the information of all the nodes is multiplied by a pseudorandom matrix and 

has the form: F
j,1
x
1
,F

j,2
x

2
,....F

j,N
x
N

, where the pseudorandom number ,1 ,2 ,, ,....j j j N    of 

any layer is known to its immediate upper layer. To construct the original signal from the 

received signal, any receiver device must have information of the pseudorandom number. 

Because an attacker has no information of the pseudorandom number, the information is 

prevented from eavesdropping and cyber attacking during data transmission in the entire SG. 

 

5. Conclusion 

We have demonstrated a model of the multi-layer communication structure for SG systems. In 

the proposed system, a HAN using ZigBee is considered to transfer the 

electricity-consumption information because it requires low power and provides better 

efficiency when compared with other devices. Additionally, at every layer of the SG system, 

the CS transmits the information of electricity consumption in a controlled manner. Finally, 

the simulation results of data transmission from layer 2 to layer 3 are illustrated and the 

efficiency and security of the proposed method over the traditional method is shown. Because 

the basic data-transmission method of the other layers is the same, the procedure and 

performance measurements are shown for only layers 2 and 3. Our work is expected to 

contribute toward the development of the SG system and can be the subject of future research 

prospects.  
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