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Abstract 
 

Wireless multicast is considered as an effective transmission mode for the future mobile social 

contact services supported by Long Time Evolution (LTE). Though wireless multicast has an 

excellent resource efficiency, its performance suffers deterioration from the channel condition 

and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two 

solutions to provide potential resource. However, resource allocation for cognitive wireless 

multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint 

sub-carriers and power allocation model based on D2D for general cognitive radio multicast 

(CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE 

systems. By opportunistically accessing the licensed spectrum, the maximized capacity for 

multiple cognitive multicast groups is achieved with the condition of the general scenario of 

imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an 

upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, 

the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound 

number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm 

is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation 

results show that the proposed algorithm improves the performance of cognitive multicast 

groups and achieves a good balance between capacity and fairness. 
 

 

Keywords: Cognitive radio, wireless multicast, orthogonal frequency-division multiple 

access, spectrum sensing, resource allocation 
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 1. Introduction 

As a major part of mobile social networks, Long Time Evolution (LTE) systems support a 

great number of mobile social contact services. An important feature of social networks is the 

need of the same traffic contents by more than one terminal. Therefore, wireless multicast has 

the potential to support mobile social contacts because of its outstanding resource efficiency 

for transmitting packets from a single sender to multiple receivers at almost the same wireless 

resource as unicast [1]. However, wireless multicast performance is restricted by the terminal 

with the worst channel condition. Be aware of the scarce spectrum resource, resource 

allocation for wireless multicast is still open for more investigation. 

D2D (device-to-device) technology is able to improve resource efficiency significantly in 

cellular networks by establishing direct links between terminals without BS forwarding in a 

cell. Meanwhile, cognitive radio (CR ) is another excellent technology in improving spectrum 

resource utilization, which provides more potential spectrum resource by secondary user 

(SUs) properly sensing the spectrum conditions and seeking to overlay its signals with those of 

the primary users (PUs) without interfering with them [2][3]. It is natural to think that D2D 

with CR function is able to improve the spectrum resource utilization more effectively by 

dynamic establishment of the transmission links with the help of cognitive terminals. However, 

less works based on CR D2D resource allocation has been found in literature. In this paper, we 

focus on multicast, a more general transmission mode, and investigate the resource allocation 

algorithm for cognitive D2D multicast. 

D2D links operate in a cognitive mode in the cellular networks, and share the spectrum 

resources with cellular users. It is well known that orthogonal frequency-division 

multiplexing/accessing (OFDM/OFDMA) has been standardized for LTE systems due to its 

flexibility in allocating spectrum. Considering the imperfect sensing conditions, we address 

the problem of resource allocation for cognitive multicast based on D2D technology. The 

imperfect spectrum sensing errors include misdetection and false alarm. A false alarm occurs 

when a CR user confuses an idle primary subcarrier as active and loses the opportunity to 

access the available channel. A misdetection occurs when a CR user confuses an active 

primary subcarrier as idle and can potentially cause harmful interference[4]. In a cognitive 

cellular system, we introduce a  model in which the users in a cell are under the control of a 

base station (BS), called PUs, and are characterized by a higher priority to access in a given 

frequency band than SUs employing D2D mode. In the meanwhile, SUs are characterized by 

CR capabilities, i.e. identifying spectrum opportunities, detecting the presence of PUs, and 

evaluating the SUs’ source interference to the PUs’ transceivers and access the spectrum 

channels shared with PUs [5][6][7]. The optimization objective is to maximize the capacity of 

the cognitive multicast network with the condition of maximum interference constraint and 

maximum power constraint, in which a risk-return function is adopted to describe the PUs’ 

activities. To maintain a certain level of fairness, a minimum allowable number of subcarriers 

allocated to the multicast group is preset, which guarantees that the CR links with smaller 

channel gains are able to have the opportunities to possess some available subcarriers instead 

of being completely rejected. We formulate the joint subcarriers and power allocation as a 

non-linear programming problem, for which the optimal solution is known to be NP-hard [8]. 

We use the Lagrange duality algorithm to solve this problem.  

The rest of the paper is organized as follows. The related work are presented in Section II. In 

section III, we describe the system model and formulate the proposed optimization problem. 
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The optimization solution for the joint subcarriers and power allocation problem is provided in 

Section IV. Section V illustrates the simulation results. Finally, we conclude this paper in 

Section VI. 

2. Related Work 

Resource allocation is used to dynamically allocate limited resources, such as subcarriers, time 

slots and power in OFDM systems, in order to achieve the best quallity of service at the lowest 

possible cost. In [9], an optimized model for joint spectrum allocation and scheduling has been 

proposed with the condition of interference characterization of Multi-Channel Contention 

Graphs to increase the throughput achieved by SUs in a multi-hop cognitive radio network. In 

[10], an OFDM-based CR system with one or more spectrum holes existing among the 

multiple PU frequency bands is considered. Subcarrier and power allocation optimization is 

formulated as a multi-dimensional 0-1 knapsack problem (MDKP) and a greedy max-min 

algorithm is proposed to solve it. In [11], two fair bandwidth-allocation problems based on a 

simple max–min fairness model and lexicographical max–min (LMM) fairness model are 

proposed to achieve the tradeoff between fairness and throughput in wireless mesh networks. 

In [12], two distributed algorithms to optimally allocate subcarriers and power in OFDMA ad 

hoc cognitive radio network have been proposed to offer either throughput maximization or 

energy efficiency subject to tolerable interference introduced to the primary network, and a 

joint subcarrier and power allocation method has been derived by Lagrange dual algorithm to 

maximize the capacity of the cognitive radio networks. 

All the aforementioned works assumed that the spectrum sensing is perfect. In fact, the 
spectrum sensing is often imperfect due to the variations of channel fading and shadow effect, 
and limited CR receiver sensitivity [13][14][15]. A statistically robust resource allocation 
scheme for a decode-and-forward (DF) relay-assisted OFDMA network with imperfect 
channel state information has been proposed in [16], maximizing the sum rate of the overall 
network while solving the problem of the power leakage between neighboring subcarriers. 
However, the problem of resource allocation in cognitive multicast networks with D2D 
communication under imperfect sensing condition is still open for more investigation.  

The major contributions of this paper are summarized as follows: 1) The proposed cognitive 

multicast scheme based on D2D technology is quite different from traditional D2D unicast 

with imperfect sensing condition. 2) The proposed optimized model CR-D2D-MC is a more 

general model and is well adapted multicast and unicast with imperfect sensing CR for D2D. 

This problem has not been addressed in literatures. 3) Lagrange dual method  is adopted to 

obtain the optimal solution for the proposed problem CR-D2D-MC with low complexity. 

3. System  Model and Problem Formulation 

3.1. System Model 

The cognitive wireless multicast networks with D2D communication operate in the cellular 

system as illustrated in Fig. 1. Multiple cognitive multicast groups opportunistically access the 

spectrum licensed to the cellular network in a cell. Both of them are assumed to employ the 

OFDMA to access the system and each subcarrier has an equal bandwidth sB  which is much 

less than the coherent bandwidth of the channel and the channel response on each of 

subchannels is flat. The wireless channel is modeled as a frequency-selective Rayleigh fading 

channel. As a result of the spectrum sensing, there are K  vacant subcarriers for SUs to 
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implement the opportunistic spectrum access. The primary BS transmits signals to its 

predefined M primary users and each primary user can use one subchannel (containing one or 

more subcarriers). Without loss of generality, we use a subcarrier as one allocated spectrum 

unit with bandwidth 
sB . The CR network consists of N  multicast groups while each multicast 

group contains one SU source node and several SU members. One source node can send data 

to multiple members over the allocated subcarriers at a time. The number of the members in 

the 
thn  multicast group is defined as 

nU . If 1nU   means the group is unicast while it is 

multicast if 1nU  . So our proposed framework  can be applied to both unicast and multicast 

transmission. In addition, the set of subcarriers allocated to the 
thn cognitive multicast group is 

denoted as n
K . 

Primary network

Cognitive multicast and unicast

Mutual interference

Communication links

Group ith

Group jth

  
Fig. 1. D2D cognitive multicast system scenario 

 

Consider that the channel link is composed of large-scale path loss and statistically 

independent small-scale quasi-static frequency selective Rayleigh fading, and the channel gain 

is 
2

,ab ab k abH L h d  , where 
,ab kh  and 

abd are the channel coefficients on subcarrier k  and the 

Euclidean distance between nodes a and b, respectively, L is a constant that depends on the 

environment, and   is the path loss exponent. L and   are assumed unchanged for all 

communication links. 
Some parameters used in this paper are described and listed in Table 1. 

 
Table 1. List of parameters and their description 

,

PS

n kH  Channel gain array between Primary BS and n
th

 multicast group on subcarrier k 

( , )PS

nH u k  Channel gain between Primary BS and
thu member  in

thn multicast group on subcarrier k 

( , )SS

nH u k  Channel gain between source node and
thu member in

thn  multicast group on subcarrier k 

( , )SP

mH n k  Channel gain from 
thn  multicast group source node to 

thm  PU on subcarrier k 

,n kP  Power allocated to 
thn  multicast group source node on subcarrier k 

k

mdq  Misdetection error of spectrum sensing 
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k

faq  False alarm error of spectrum sensing 

 

3.2 Problem Formulation 

The coexistence of CR network and primary network will lead to mutual interference which 

can be divided into two types: one is caused by SUs to PUs which is caused by out-of-band 

leakage and imperfect spectrum sensing, and the other is caused by the primary BS to SUs 

which can lead to the reduction in the rate of cognitive users. 

As mentioned above, the signal transmitted from the primary BS can also cause interference 

to the cognitive network, and this kind of interference is reflected in the rate decrease of SU. 

We denote ( ) ( )m jw

PU e  as the power spectral density (PSD) of the signal transmitted from the BS 

to
thm  PU. The interference introduced to subcarrier 

thk  can be written as [12] 

 
( 1/ 2)

( 1/ 2)

( , ) ( )
s

s

b B

K

b B

J m k I d  





                                              (1) 

where constant b represents the number of subcarriers apart from the PU subband to SU 

subband, and 

 
2

( )1 sin(( ) / 2)
( ) ( )

2 sin(( ) / 2)

m jw

K PU

Q
I e d

Q





 
  

  

 
   

 
                             (2) 

is the PSD of 
thm  PU’s signal after the Q-FFT processing [17].  

As the members in the 
thn group use the same subcarriers to receive data from the source 

node, the interference introduced to 
thu member in the 

thn  group on subcarrier k is 

, ,( , ) ( , ) ( , )PS

m n m n

m

J u k H u k J m k


                                         (3) 

where 
2

, ,( , )= ( , )PS PS

m n m n muH u k L h u k d  . 

The channel-to-interference-plus-noise ratio (CINR) of 
thu member in the 

thn  group on 

subcarrier k can be expressed as 

, ,

,

0

( , )
( )

( , )

PS

m n n k

n k

s n

H u k P
u

N B J u k
 


                                                 (4) 

Assuming that QAM is adopted, the achievable maximum transmission rate of 
thu member 

can be written as follows 

 
, , ,

, 2 2

0

( ) ( , )1 1
( ) log 1 log

( , )

PS

n k m n n k

n k

s n

u H u k P
R u

K K N B J u k

   
            

                (5) 

where   is a function of the required BER which is   0.2 / -1 /1.5BER   for Rayleigh channel 

[18].
 
 

The achievable rates of members in 
thn group are always different because of their channel 

conditions. However, the transmission rate from multicast source in a group is confined by the 

users with the worst channel state. Therefore, we can define the minimum rate of the users as 

the transmission rate 
,n kR  for a multicast group given below 

 
, ,

, 2 2 ,

0

( )1 1
min log 1 log 1 min ( , )

( , )n n

n k n k PS

n k m n
u U u U

s n

u P
R H u k

K K N B J u k



 

  
            

         (6) 

where 
nU  represents the set of receivers of thn group. 

In this paper, our objective is to optimize the allocation of  subcarriers and power resources 

to each SU multicast group under the interference constraints and power constraints so that the 
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capacity of the cognitive multicast based on D2D (CR-D2D-MC) communication is 

maximized. We employ the risk-return expression [19] to describe the PU activities and 

assume a linear rate loss function
,( )n kL P . The optimization problem CR-D2D-MC can be 

formulated as follows: 

 ,

,

2 , ,
{ } 1 0

log 1 min ( , ) ( )max
( , ) nn k

n

N
n kk n PS

m n k n k
u UP n k s n

Pw U
H u k L P

K N B J u k



 

 
     


K

                        (7) 

s.t. ( )

, , , ,

1 n

N
m

k n k n k k n k n k m

n k

w P I P g I
 

 
K

                                         (7a) 

'

'

, , ,
0, 0,n k n k n k

P P P n n                                                 (7b) 

,

n

n k n

k

P P



K

                                                          (7c) 

n nL                                                              (7d) 

where formula (7) is the objective function of the optimization model, kw  indicates the 

probability that a subcarrier k is truly vacant and 
k  defines the probability that a subcarrier k 

is occupied by PU in the current frame.  

Formula (7a) expresses the maximum interference constraint at 
thm  PU, and 

mI  indicates 

the interference threshold at 
thm  PU. From the formula we can see that the interference 

introduced to 
thm PU includes two parts: the interference caused by out-of-band leakage and 

the interference caused by imperfect spectrum sensing. 

The PSD of the signal from the source node in 
thn  group on subcarrier k is expressed as [20]  

2

, ,

sin
( )SU s

n k k n s

s

fT
f P T

fT





 
   

 
                                              (8) 

where 
sT is the OFDM symbol duration. The interference caused by this source in 

thn  

multicast group to thm  PU can be written as 
2

( 1/ 2)
( ) ( )

1 , , ,
( 1/ 2)

sin
( , ) ( , )

s

s

a B
m SP ms

n k s m n k n k
a B

s

fT
I n k P T H n k df P I

fT









 
  

 
 %                (9) 

where
2

( , ) ( , )SP SP

m m mnH n k L h n k d  , ( , )SP

mh n k  is the corresponding channel coefficient , a is a 

constant  representing the frequency distance between the corresponding CR and the PU in 

multiples of sB , and 

2
( 1/ 2)

( )

,
( 1/ 2)

sin
( , )

s

s

a B
m SP s

n k s m
a B

s

fT
I T H n k df

fT









 
  

 
% . 

In addition to out-of-band emissions, imperfect spectrum sensing causes severe co-channel 

interference to PUs when SUs use the subcarriers that are occupied by PUs for transmission. 

This type of interference is defined as 
( )

2 , 0 , ,( , ) ( , ) / =m SP

n k m s n k n kI n k P H n k N B P g                                     (10) 

where 
0N  is the one-side PSD of AWGN.  

To sum up, the total interferences to thm  PU on subcarrier k introduced by thn source node 

can be expressed as 
( ) ( ) ( ) ( )

, 1 2 , , , ,( , ) ( , )m m m m

n k k k k n k n k k n k n kI w I n k I n k w P I P g    %                      (11) 

where k  is the probability that a subcarrier k is truly occupied. Given that the cognitive 

network identified subcarrier k is vacant, k  can be expressed as 

 ˆPrk K kO V 
ˆPr( )Pr( )

ˆ ˆPr( )Pr( ) Pr( )Pr( )

k K K

k K K k K K

V O O

V O O V V V


 (1 )(1 )

k k

md pu

k k k k

md pu fa pu

q q

q q q q


  
     (12) 
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where 
KV  and 

KO  denotes the events that subcarrier k is actually vacant and occupied by PUs 

respectively, ˆ
kV  is the event that subcarrier k is sensed vacant, and k

puq  is the probability that a 

PU transmits on subcarrier k. 

Similarly, 
kw  can be expressed as 

ˆPr( ) 1k k k kw V V                                                   (13) 

Formula (7b) represents the fact that each subcarrier can be allocated to at most one group, 

whereas (7c) represents the total transmit power at the source node of thn  multicast group and 

nP  denotes the total power that the source node of thn group can load. The minimum number 

limit of subcarriers allocation is represented in formula (7d) where 
nL represents the minimum 

number of subcarriers allocated to thn cognitive group. 

4. Joint Subcarrier and Power Allocation Algorithm 

With the absence of a centralized controller similar as the base station in cellular networks, 

cognitive multicast networks with D2D communication can not undertake a centralized 

resource allocation. Therefore it is necessary to find a distributed resource allocation algorithm. 

Lagrange dual method is one of the important distributed convex optimization algorithms for 

solving the resource optimization problem. In order to conveniently describe below, we let 

,n k instead of 
 

,

0

min ( , )

( , )

n

PS

m n
u U

s n

H u k

N B J u k



 

 in (7), and let 
, .( )n k n kL P C P  , where C is a constant. Then the 

Lagrangian function can be expressed as  

  ( )

2 , , , , ,

1 1 1

( , , ) log 1 ( )
n n

N M N
k n m

n k n k m n k k n k k n k m

n k m n k

w U
L p P P w I g I

K
    

    

 
     

 
  

K K

 

, ,

1

( )
n

N

k n k n n k n

n k

C P P P 
 

   
K

                (14) 

where 
1[ , , ]m   , 

1[ , , ]n   ,
  and   are non negative dual variables associated 

with interference constraint and power constraint, respectively. 

Therefore, the Lagrange dual objective is obtained as follows: 

( , ) max ( , , )D L p                                                     (15) 

s.t. 
, 0n kP   

Accordingly, the dual optimization problem is 

0, 0
min ( , )D

 
 

 
                                                       (16) 

The Lagrange dual problem is a convex optimization problem, regardless of the convexity 

of the primal problem (7). The problem in (16) can be decomposed into K independent 

sub-problem, one for each subcarrier k: 

 * ( ) *

2 , , , , ,

1 1

( , ) max log 1 ( )
N M

k n m

k n k n k m k n k k n k k n n k

n m

w U
D P w I g C P

K
      

 

   
       

   
      (17) 

Applying Karush–Kuhn–Tucker (KKT) conditions for Eq.(14), *

,n kP  can be derived as: 

*

,
( ) .
, ,

1

1

ln 2[ ( ) ]

k n

n k M
m n k

m k n k k n k k n

m

w U
P

K w I g C


   





 
 
  
 

   
 


                    (18) 

The right side in Eq. (18), ( ) max( ,0)   , and  and   can be solved by sub-gradient 

method with guaranteed convergence as follows 
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( )

, , ,

1

( 1) ( ) ( ) ( )
n

N
m

m m m n k k n k k n k

n k

t t s t I P w I g  



 

  
       

  


K

                (19) 

,( 1) ( ) ( )
n

n n n n k

k

t t v t P P 





  
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  

K

                               (20) 

where ( )s t  and ( )v t  are the step size which are chosen sufficiently small to converge to the  

optimum value *  and * , respectively. 
The whole procedure of the proposed algorithm is summarized as Table 2. 

 
Table 2. Dual optimization algorithm 

Initialize: 

1. Find out the minimum channel gain between the source node and members for each multicast 

group; 

2. Given  ,  , ( )s t , ( )v t ,  , (0) 0D  , and 1t  ; 

Repeat: 

3. Compute *

,n kP  and ( ) ( , )n

kD    
as in (18) and (17), and construct ( ): ( , )n

kD D   ; 

4. Repeat: 

Perform a 2-D search on D , pick *n , *k  that gives the maximum value of all K N  values 

in D , if *| | nn
L  , allocated subcarrier *k to group *n , otherwise group *n exit; 

Until *| | nn
L  ; 

5. Repeat: 

Perform a 2-D search on D , pick 
*n ,

*k  that gives the maximum value of all K N  values 

in D , allocated subcarrier *k to group *n ; 

Until all the subcarriers have been allocated;  

6. Compute ( )tD and update  and  , : 1t t  ; 

Until ( 1) ( )| |t tD D    . 

5. Simulation 

In order to estimate the performance of the proposed optimization algorithm, the simulation is 

performed in MATLAB environment. An OFDM-based cognitive multicast network of 

12K   vacant subcarriers is assumed with 4N   multicast SU groups, and the bandwidth of 

each subcarrier is 10sB kHz . The primary BS transmits downlink data to its 2M   

subscribed PUs. The channel coefficients are outcomes of independent Rayleigh distributed 

random variables with mean equal to 1, and the path loss exponent 3  , the environment 

constant 1L  . 

In Fig. 2, we present the performance comparison between our proposed algorithm and the 

global optimal exhaustive search algorithm. As shown in the figure, the dual optimization 

algorithm and the exhaustion search algorithm is almost impossible to distinguish in 

performance, When the number of OFDM subcarriers increases, the difference of system 

capacity (sum rate) between the original optimal value and its dual optimal value will become 

more and more small. In a real system, the number of subcarriers is usually relatively large, 

and the computational complexity is too high when using the exhaustive search algorithm, so 

it is suitable to use our proposed algorithm. And when the number of subcarriers tends to be 

infinity, the dual algorithm we proposed will become global optimal. 
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Fig. 2. Performance comparison between the proposed algorithm and exhaustive search algorithm 
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Fig. 3. Convergence of the proposed algorithm with different step size 

 

Fig. 3 shows the comparison of convergence processes of the proposed algorithm with 

different step sizes. Fig. 3 (a) and Fig. 3 (b) are obtained under the same conditions, e.g. the 

maximum power of each group 4nP W  , the maximum interference threshold 0.05mI W , the 

number of multicast group 4nU  and tolerance -5=10 . We choose 1/ t  as the step size of 

Fig. 3 (a) and that of Fig. 3 (b) is 1/ t .Clearly, Fig. 3 (a) converges in 30 iterations and 

performs much faster than Fig. 3 (b) while Fig. 3 (b) takes up to 600 iterations. It shows that 

the proposed algorithm has a very fast convergence speed and emphasizes the running time of 

the algorithm depending on the choice of the step size. It can also prove that this algorithm is 

especially suitable for optimization in wireless environment and can find the optimal solution 

in a very short period of time so as to overcome the channel variability. 
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Fig. 4. Capacity Comparison of dual optimization algorithm and average allocation algorithm 

 

 
(a) 

 
(b) 

Fig. 5. Comparison of the proposed algorithm with considering fairness and without fairness. (a) 

Number of subcarriers allocated to each group; (b) Allocation of power on each subcarrier 

 

As shown in Fig. 4, we compare the performance of the proposed algorithm and the average 

allocation algorithm. It is obvious that the performance of the proposed algorithm is much 
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superior to that of the average allocation algorithm. The proposed algorithm performs a 2-D 

search on D  which involves searching through all KN  values of ( ) ( , )n

kD    to determine the 

optimal subcarrier matching for multicast groups, subsequently allocates power on each 

subcarrier to maximize the achievable rates of the groups. The algorithm combines the 

subcarrier allocation and the power allocation for optimal allocation, rather than consider them 

separately. Furthermore, our proposed algorithm considers the imperfect spectrum sensing, 

thus it can efficiently allocate the resources. Compared to the average allocation algorithm, it 

can make a good use of the subcarrier and power resources and obtain a better performance. 

Because the different environment conditions may cause inconsistent service performance for 

the different multicast groups, the proposed algorithm both considers the imperfect spectrum 

sensing and fairness between multicast groups, thus the achieved capacity is a little lower than 

that of the algorithm without considering the fairness and the scheme with perfect spectrum 

sensing.  

However, we find from Fig. 5 (a) that the proposed scheme with fairness guarantees the 

spectrum requirements of each multicast group, specified by 
nL  and without considering the 

fairness the 2
th
 group has not been allocated any subcarriers and will not meet their quality of 

service. It is not feasible as fairness is one of the major concerns in CR system. As illustrated 

in Fig. 5 (b), the subcarriers are not equally utilized because some subcarriers are allocated 

more power than others. Compared with the fairness case, the difference of power distribution 

on each subcarrier of the unfairness case is more apparent. 
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Fig. 6. Interference to a primary user 

 

Fig. 6 shows the interference introduced to 1th  primary user which is caused by the 

secondary transmission for fixed values of interference threshold
1=0.05I W . It is obvious that 

the interference increases with the power constraint and the number of multicast groups but 

never more than the interference threshold. When there is only one multicast group in the 

cognitive network, the interference curve is almost linear. As the number of groups increases, 

the interference become more complex, and the interference curve is no longer a linear 

increase. 



1544                                                                           Chen et al.: Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing  

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

Group number

C
a
p
a
c
it
y
（

b
p
s
）

 
Fig. 7. Capacity with the members in the multicast group 

 

When the number of members in the multicast group increases, the performance of the 

multicast networks will also improve. From Fig. 7, we know that the capacity of the system 

almost linearly increases with the number of users in the multicast group. In addition, the 

result indicates that multicast technology can greatly improve the system capacity and make 

D2D communication more suitable for emergency communication and high data transmission 

services. 

6. Conclusion 

In this paper, we introduced a joint subcarrier and power allocation method CR-D2D-MC for 

cognitive multicast with D2D communication coexisting with cellular networks. The impact 

of imperfect spectrum sensing is considered in the proposed problem, which results in the 

capacity decrease of the cognitive multicast. In the proposed algorithm, the fairness is 

guaranteed by defining a lower bound of allowable number of subcarriers allocated to the 

multicast groups. The simulation results show that the proposed algorithm improves the 

spectrum efficiency and maintain a better tradeoff between capacity and fairness for cognitive 

networks in a low algorithm complexity. Therefore, employing cognitive multicast based on 

D2D is able to explore more potential spectrum resources adequately to improve the system 

performance, and make it possible to satisfy the requirements of multiple kinds of high rate 

transmission for mobile social contacts. 
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