
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1311

Copyright ⓒ 2011 KSII

This research is supported by Basic Science Research Program through the Korea Research Foundation (KRF)

funded by the Ministry of Education, Science and Technology at 2011 (2011-0005458).

DOI: 10.3837/tiis.2011.07.006

Feature-guided Convolution for Pencil
Rendering

Heekyung Yang

1
 and Kyungha Min

2

1 Dept. of Computer Science, Graduate School, Sangmyung Univ.,

Hongji-dong, Jongro-gu, Seoul, Korea

[e-mail: hkyang@smu.ac.kr]
2 Div. of Digital Media, School of Software, Sangmyung Univ.,

Hongji-dong, Jongro-gu, Seoul, Korea

 [e-mail: rminkh@smu.ac.kr]

*Corresponding author: Kyungha Min

Received January 24, 2011; revised April 21, 2011; revised June 8, 2011, accepted July 8, 2011;

published July 28, 2011

Abstract

We re-render a photographic image as a simulated pencil drawing using two independent line

integral convolution (LIC) algorithms that express tone and feature lines. The LIC for tone is

then applied in the same direction across the image, while the LIC for features is applied in

pixels close to each feature line in the direction of that line. Features are extracted using the

coherent line scheme. Changing the direction and range of the LICs allows a wide range of

pencil drawing style to be mimicked. We tested our algorithm on diverse images and obtained

encouraging results.

Keywords: Non-photorealistic rendering, pencil drawing, convolution, feature, coherent

lines

1312 Yang et al.: Feature-guided Convolution for Pencil Rendering

1. Introduction

The simulation of artistic media such as pencils [1][2][3][4][5][6][7][8][9][10][11][12][13]

[14][15][16], pen and ink [17][18][19][20][21], hatching [22][23][24][25][26] or brushes

[27][28][29][30][31][32] has been a durable and interesting research topic in NPR

(non-photorealistic rendering). In particular, there has been a lot of work on pencil rendering

that aims to mimic pencil drawings. Like other NPR techniques, approaches to pencil

rendering can be classified by domain: some techniques re-render an image [1][2][3][5]

[6][7][8][9][10][12][13][14][15][16], while others start with a 3D mesh [4][22][23][11][15]

[25].

We introduce a new pencil rendering algorithm that re-renders a photograph into a

monochrome pencil drawing. The most widely used scheme for producing pencil drawing

effects is line integral convolution (LIC) [2], which integrates the noises scattered on the

pixels of an image along an integration direction. The existing LIC-based schemes

[5][19][7][8][13], however, cannot produce visually pleasing pencil drawing effects, since

they have limitations in implementing real pencil drawing art techniques. In real art, an artist

depicts a scene using a pencil by hatching areas and emphasizing important features with

thicker strokes. Several pencil rendering techniques [6][7][9][14] used features, but their

results are far from pencil drawing images. However, authors [31][32] have successfully

exploited shape information such as flow or image parsing hierarchy to re-render images in a

painterly style. Brush strokes are aligned along flow in an image extracted by RBF function in

[31], and the type of brush strokes to apply is determined using image parsing hierarchy in [32].

Our pencil rendering algorithm uses LIC scheme to produce pencil drawing effects. A key idea

is that we extract features from an image and construct a smooth flow that follows the feature.

We exploit the smooth feature flow as the integration direction for LIC, because we believe

that the underlying problem of the existing schemes is the way in which features extracted

from an image are utilized. In our scheme, two feature-guided LIC processes are applied

independently: one re-renders areas of smooth tone and the other emphasizes the salient

features of images. The resulting pencil drawings are more convincing than those produced by

many existing techniques.

Our scheme is outlined in Fig. 1. We start by extracting features from an image and

vectorize them. Next, we enhance the contrast of the image and add some noise to assist the

LIC processes: tonal LIC (tLIC) is used to create hatching effects and feature LIC (fLIC)

creates bold strokes that replicates the important features of the image. The results of these two

LIC processes are merged to produce the final pencil rendering.

Our most important contribution is that we present a pencil drawing scheme that presents

visually pleasing results. Note that the quality of the result is a key issue in evaluating pencil

drawing algorithms. We have attacked this problem by applying different styles of pencil

strokes according to the features extracted from the image. This strategy, which mimics the

artistic pencil drawing technique, produces visually pleasing pencil drawings. Another

contribution is that our scheme also allows considerable latitude in controlling the style of

pencil drawing.

The rest of paper is organized as follows: In Section 2, we briefly review related work. We

describe the pre-processing steps in Section 3 and the rendering algorithm in Section 4. In

Section 5, we present details of our implementation and experimental results. Finally, we

conclude this paper and discuss future research directions in Section 6.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1313

2. Related Work

2.1 Pencil drawing from images

Image-based schemes can be further classified into pen-and-ink illustration [17][18][19][20],

and those based on physical models [1][2][3][16], LIC [5][6][7][8][13][14] and stroke textures

[9][10][12].

Some approaches to pen-and-ink illustration produce results very similar to pencil drawings.

Salisbury et al. [17] and Winkenbach and Salesin [18] presented pen-and-ink illustration

schemes in which textures made up of various tones and patterns were used to re-render an

image. Later, Salisbury et al. [19] extended their scheme for scale-dependent reproduction of

illustrations. Salisbury et al. [20] also introduced an approach in which stroke textures are

arranged along user-defined directions over an image to create a pen-and-ink illustration. The

results of these schemes look like line illustrations rather than pencil drawings.

Fig. 1. Overview of the algorithm.

Feature extraction (3.1)

Vectorize

features (3.2)

Region analysis (3.3)

tLIC for tone

(4.1)

fLIC for features

(4.2)

Merging

(4.3)

Input image Pencil rendering

1314 Yang et al.: Feature-guided Convolution for Pencil Rendering

One approach to creating pencil drawings is to model the physical process involved. Sousa

and Buchanan [28] modeled the physics of a graphite pencil drawing on paper, and used this

model to render 3D scene. They went on [19] to model the action of blenders and erasers.

Takagi et al. [29] contributed a volumetric model of paper. AlMeraj et al. [24] collected and

analyzed actual pencil strokes to conduct a drawing scheme. These techniques produce

realistic results, but they are difficult to control and require a lot of computation.

Line integral convolution (LIC) [2] can be used to visualize vector fields as textures, and

thus offers a way of producing hatching. Mao et al. [5] pioneered this application of LIC. They

segment an image into a number of regions, each of which is then rendered with strokes in the

same direction; but this uniformity is not very realistic. Li and Huang [6] got around this

problem by using gradient vectors and edges to determine stroke directions. This gives more

variety, but is unable to express tonal details. Yamamoto et al. [7] added contours and paper

surface effects, and also showed how to overlap textures to match the intensities of different

regions of an image. They [8] also applied LIC to colored pencil drawing blending colors

using the Kubelka-Monk model. Xie et al. [13] extended the scope of LIC-based rendering

schemes to video, using GPU programming techniques. Chen et al. [14] used the Sobel

operator to find edge information, which is added to the pencil drawing produced by LIC. But

this scheme still suffers from the lack of realism, detailed shading, and contours.

In stroke-based schemes, originally brush-strokes are created along a direction field derived

from an image. This approach can be extended to other artistic media. Matsui et al. [9]

produced crayon drawings by overlapping stroke textures along boundary curves, and

Murakami et al. [10] represented the effects produced by a range of media, including pastels,

charcoal and crayons. Melikhov et al. [12] applied pencil textures to curves approximating the

skeletons of objects in an image. But stroke-based schemes are not a good match with the

hatching patterns seen in monochrome pencil drawings: it is difficult to control the strokes in

the way necessary to create a realistic pencil drawing from an image.

2.2 Pencil drawing from 3D meshes

Most pencil drawing algorithms that start with a 3D mesh use tonal maps to build textures to

represent variations in intensity. This approach can achieve accurate shading and attractive

hatching, and also reproduce feature lines such as contours. Schemes based on tonal maps

have been used to produce hatching effects [22][23][25] and line illustrations [15], as well as

pencil drawing [4][11]. In particular, Praun et al. [22] developed the artistic tonal map for

hatching a 3D mesh in real time. Webb et al. [23] extended this to achieve fine control of tone.

Paiva et al. [25] presented a fluid-based hatching scheme to render triangular meshes of

arbitrary topology and complicated geometry. The texture maps are applied to the mesh along

the directions estimated by fluid equations.

Lake et al. [4] used a tonal map to create a pencil drawing from a 3D mesh, but they do not

consider appropriate tonal effects. Lee et al. [11] render triangular meshes using a tonal map

by generating various pencil textures and applying them in direction of principal curvature.

Their scheme is accelerated by the use of GPU. Kim et al. [15] extended this scheme to

generate line art illustrations of dynamic 3D objects with highly reflective surfaces.

3. Preprocessing

In the preprocessing step, we extract and vectorize feature lines and then segment image using

those lines.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1315

3.1 Feature extraction

Features are a set of pixels with similar intensities, adjacent to other pixels with different

intensities. Sobel operators and Canny edge detectors are frequently used to extract features

from images; but more complicated schemes such as the difference of Gaussian (DoG) filter

have recently been shown to achieve better results. We make use of coherent lines [33], which

are obtained by applying a DoG filter to the flow of an image. We use the edge tangent flow

(ETF), which is obtained by averaging the tangent vectors of the pixels. Coherent lines are sets

of pixels which have DoG values, obtained from the flow, that are greater than a threshold. In

Fig. 2, we show edges found by the Sobel, Canny, and DoG filters, together with coherent

lines.

3.2 Vectorizing features

The operations that we need to perform on feature lines in pencil rendering are finding the

nearest feature lines to a pixel and computing distances from a pixel to feature lines.

Unfortunately, features represented as sets of pixels cannot support these operations

efficiently. Therefore, we vectorize the features that we have extracted as coherent lines using

following steps. An example of a coherent line is shown in Fig. 3 (a).

(1) At each pixel in a feature, we construct a stream by following the ETF vectors computed

as described in section 3.1 (see also Fig. 3 (b)). The process of following an ETF vector

stops at a pixel where that vector at the pixel changes rapidly or is undefined. If there are

n pixels in a coherent line, then at most n streams will be produced.

(2) We assign a center weight to each pixel that belongs to a feature. The weights of the

pixels on the boundary of a feature are initialized to 1. Then the weights are propagated

from the boundary of a feature toward its center by increasing the weight by 1 at each step

(see Fig. 3 (c)).

(3) We then estimate a center weight for each stream by averaging the center weights of all

the pixels in the stream (see the red curves in Fig. 3 (d)).

(4) We then select streams with center weights that are greater than those of their neighboring

streams (see the green curves in Fig. 3 (d)).

(a) Sobel (b) Canny (c) DoG (d) Coherent lines
Fig. 2. Comparison of feature extraction algorithms.

1316 Yang et al.: Feature-guided Convolution for Pencil Rendering

The streams selected by this process can be regarded as vectorized feature lines, which

segment an image into several regions. A region whose size is less than a threshold are ignored

as noise. Conventionally, in image processing, the threshold is set to 10.

4. Pencil rendering using LIC

We use line integral convolution (LIC) to produce pencil effects. The computation of an LIC

requires an image to contain noise, which is then integrated in the directions of the lines.

4.1 Generating noise

We generate monochrome noise with an intensity that is proportional to pixel intensity.

However, in line drawings, artists tend to express gray scales in M tonal steps. Therefore, we

generate noise with stepped intensity. We denote the noise at a pixel p whose intensity is ip as

N(p), which has a binary value, either BLACK or WHITE. N(p) is determined as follows:

Fig. 3. Vectorizing features.

(a) A sample coherent line (grey pixels)

(c) Estimating center weights from the

boundary of a coherent line (light blue =

1, blue = 2, dark blue = 3)

(b) ETF vectors at the pixels on a

coherent line

(d) Estimating streams (red curves)

and determining the stream with the

local maximum (green curves)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1317

M denotes the number of tonal steps, and rand () is a random number generation function.

In the procedure, “rand()%(M+1)” generates a number in (0, M), and

“(rand()%(M+1))/M” generates a number in (0, 1). A darker pixel whose ip is small has

a higher probability for generating BLACK noise, while a whiter pixel whose ip is large has a

higher probability for generating WHITE noise. Results for M = 10, 20, and 30 are shown in

Fig. 4.

4.2 tLIC: LIC for tone

We perform LIC on the noise generated using the procedure described in Section 4.1. A line

integral convolution has the following form:

if ((rand()%(M+1))/M) > ip)

 N(p) = BLACK;

else

 N(p) = WHITE;

(a) 10 tones (b) 20 tones (c) 30 tones

Fig. 4. Noise generated to produce different numbers of tones.

1318 Yang et al.: Feature-guided Convolution for Pencil Rendering

(1) d)(p 
L

L
dttN

This integration is performed at pixel p in direction d over the range of (-L, L). N(x) denotes

the noise on the pixel x. The integration procedure is illustrated in Fig. 5.

We can control the style of pencil rendering using the parameters L and d. Increasing L

produces a smoother style. Fig. 6 shows uni-directional hatching and Fig. 7 shows

cross-hatching. The direction d determines whether there will be uni-directional hatching or

cross-hatching. To achieve cross-hatching, the direction of integration d at each pixel is

determined as follows:

The integration direction d at each pixel is either along d0 or orthogonal to d0 at same

probability. Note that “rand()%2” generates 0 or 1 at same probability. The operator “ⅹ” is

a cross-product operator, Z denotes the direction of the positive z-axis, which is orthogonal to

the plane of the image.

The direction of integration d also affects the pencil rendering style. We can perturb d as

follows:

Increasing δ smudges the pencil strokes. Figs. 8 and 9 show the effects on uni-directional

hatching and cross-hatching. The following procedures shows how tLIC is performed at each

pixel. Fig. 11 (a) shows a tLIC image rendered using L = 25 and δ = 7.5◦.

if (rand()%2) = 0)

 d = d0;

else

 d = d0 ⅹ Z;

d = rotate (d0, δ);

for each pixel p

 determine d;

 determine L;

 tLIC(p)  Integrate (p, d, L);

Fig. 5. Integrating noises with pixels lying on (p – Ld, p + Ld).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1319

Fig. 6. tLIC results with various values of L for uni-directional hatching.

(b) L = 5 (c) L = 10 (d) L = 25 (e) L = 50

Fig. 7. tLIC results with various values of L for cross-hatching.

(a) δ = 0◦ (b) δ = 35◦

(c) δ = 60◦

(d) δ = 90◦

Fig. 8. tLIC results with various perturbations for uni-directional hatching (L = 25)

Fig. 9. tLIC results with various perturbations for cross-hatching (L = 25)

(a) L = 5 (b) L = 10 (c) L = 25 (d) L = 50

(a) δ = 0◦ (b) δ = 35◦

(c) δ = 60◦

(d) δ = 90◦

1320 Yang et al.: Feature-guided Convolution for Pencil Rendering

4.3 fLIC: LIC for features

To render features, we apply the integration formula (1) to the pixels near the vectorized

feature lines. We assign an offset γ to each vectorized feature, and then estimate the LIC for

every pixel that is closer to a feature line than the offset. At each pixel p, the direction of

integration d is the tangent direction of q, which is the projection of p on to the feature line

(see Fig. 10). In performing fLIC, pixels within the offset are tagged with the closest

vectorized feature line and the distance. This information is used in merging tLIC and fLIC.

The procedure for tLIC is as follows:

Fig. 11 (c) shows an fLIC image rendered using γ = 10.

4.4 Merging LICs

The two pencil rendering results, tLIC and fLIC, are merged by linear interpolation. Since the

fLIC is only obtained from pixels within the offset γ from vectorized feature lines, pixels

outside the offset γ have fLIC values of 0. The final value of a pixel p is obtained as follows:

for each pixel p

 if p is within γ to a feature line f

q  projection of p onto f;

 dist(p)  dist (p, q);

 d(q)  the direction of q along f;

 fLIC (p)  Integrate (p, d(q), L);

Fig. 10. Determining direction for fLIC at a pixel p.

(a) Vectorized feature

(b) Determining direction at a pixel p

p

q

d(q)

d(q)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1321

Fig. 11 (b) shows the value of (dist(p)/ γ), and (d) shows the result of merging the tLIC and

fLIC results. The pseudo code for the overall process of pencil rendering is suggested in

Appendix A.

for each pixel p

 if dist(p) > γ

 LIC(p) = tLIC(p);

 else

 LIC(p) = (dist(p)/γ) * tLIC(p)

+ (1 – dist(p)/γ) * fLIC(p);

(a) Result of tLIC (c) Result of fLIC (b) (dist(p)/γ)

(d) Merged image of tLIC and fLIC

Fig. 11. Merging of tLIC and fLIC

1322 Yang et al.: Feature-guided Convolution for Pencil Rendering

5. Implementation and Results

Our algorithm was implemented on a PC with an Intel Pentium QuadCore
TM

 Q6600 CPU and

4Gb of main memory. The programming environment was Microsoft Visual Studio
TM

 2008

with the OpenGL libraries. We modified the pencil rendering results using a paper texture

effect [11]. We tested our pencil rendering algorithm with various combinations of parameters

and results are shown in Fig. 12. We also re-rendered a range of photographic images,

including human faces, animals, inanimate objects, landscapes, and animation characters. The

resolutions, parameters and processing times for the test images are given in Table 1.

Thumbnails of the test images are shown in Fig. 13, and the re-rendered are shown similarly in

Fig. 14. Higher-resolution versions of these images can be found in the accompanying

appendix.

Cross-hatching, L = 5,

No Perturbation

Cross-hatching, L = 25,

No Perturbation

Cross-hatching, L = 50,

Perturbation = 60

Uni-directional hatching, L = 5,

No Perturbation

Uni -directional hatching, L = 25,

No Perturbation

Uni -directional hatching, L = 50,

Perturbation = 35

Fig. 12. The effects of changing the integration parameters.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1323

5.1 Comparison and discussion

We compare our scheme with existing LIC-based pencil rendering schemes in two points:

direction of integration and various drawing styles. The LIC-based schemes produce pencil

drawing effect on an image by applying LIC using the noise on the image along an integration

direction. In most existing schemes, the image is segmented into several regions, where the

LIC process is performed along the same direction. Fig. 15 shows some images from existing

schemes. Comparing them with our result (Fig. 14) shows the excellence of our algorithm.

Table 1. Resolution, parameters and computation times.

Image Resolution

(pixels)

Integration

length (L)

Perturbation

(δ)

Feature

offset (γ)

Computation time

(sec)

(a) 600 ⅹ 800 10 18 5 7.4

(b) 816 ⅹ 984 10 18 5 26.1

(c) 800 ⅹ 600 10 40 5 373.8

(d) 600 ⅹ 800 10 90 5 16.8

(e) 580 ⅹ 857 10 18 5 18.7

(f) 1200 ⅹ 606 10 18 5 37.8

(g) 900 ⅹ 800 10 90 5 26.1

(h) 1192 ⅹ 1193 10 18 5 136.2

(i) 1600 ⅹ 1200 10 18 5 117.7

(j) 1100 ⅹ 550 10 18 5 20.3

(k) 1024 ⅹ 685 10 6 5 18.7

Li and Huang's work [6] is devised from real pencil drawing process that divides a scene

into regions, and applies pencil strokes along image moment and texture direction. However,

they do not apply strokes to distinguish two neighboring regions, which is one of the key

techniques in real pencil drawing art. The common point between [6] and ours is that

individual pencil strokes are applied to the segmented regions. The differences are (i) we apply

pencil strokes along feature lines to distinguish two neighboring regions, (ii) we apply pencil

strokes of randomly uniform direction to each region, and (iii) we present an LIC scheme

whose parameters are controlled to produce various pencil rendering effects. We compare our

results and the results from [6] that render similar objects in Fig. 16. We execute a user test for

comparison. The test questions are as follows:

(1) Which image is more similar to real pencil art drawings?

(2) Which image gives greater visually pleasing effect?

The answers from twenty subjects of different sexualities and ages are analyzed in Table 2.

Table 2. User test results.

Question Results from [6] Our result

(1) 1 19

(2) 2 18

Most LIC-based schemes take little effort in producing various pencil drawing styles. They

didn't support various drawing styles by testing the parameters of their drawing schemes. In

contrast, we have produced various pencil styles by perturbing the integration parameters such

as integration range and integration direction. Our scheme cannot express all the pencil

drawing styles. For example, miniature style, which is often used in portrait, is not supported

1324 Yang et al.: Feature-guided Convolution for Pencil Rendering

by our scheme. Another shortcoming is lack of user control in performing pencil rendering.

Users may require freedom in selecting features to emphasize or to ignore. They may want to

assign the hatching direction directly for a region. Our scheme doesn't support those user

interactions.

Fig. 13. Test images Fig. 14. Re-rendered images

(a) Result from [17] (b) Result from [7]

(c) Result from [8] (d) Result from [13]

Fig. 15. Results from existing LIC-based pencil rendering schemes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1325

(a) Results from [6]

(b) Our results

Fig. 16. Comparison of results from [6] and ours. Both results deal with similar objects: flowers and

woman.

6. Conclusions and Future Plans

We have presented a novel pencil rendering algorithm in which using LICs which are guided

by features. Our tLIC renders the tone of an image and our fLIC emphasizes its salient features.

The fLIC is executed along vectorized features extracted as coherent lines. Our algorithm also

supports various pencil drawing styles which can be achieved by controlling the style of tone

and the width of lines. We have tested our algorithm on various photographs including

portraits, landscapes, animals, inanimate objects, and animation characters.

Our algorithm requires further development, for example, it cannot replicate a miniature

pencil drawing style. Another task is to develop colored pencil rendering schemes that can be

used for portraits and botanical illustrations. We also aim to develop a pencil rendering

scheme for real-time video re-rendering.

References

[1] M. C. Sousa and J. W. Buchanan, “Computer-generated graphite pencil rendering of 3D polygonal

models,” in Proc. of Eurographics 1999, pp. 195-207, 1999. Article (CrossRef Link)

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.3948

1326 Yang et al.: Feature-guided Convolution for Pencil Rendering

[2] M. C. Sousa and J. Buchanan, “Observational model of blenders and erasers in

computer-generated pencil rendering,” in Proc. of Graphics Interface 1999, pp. 157-166, 1999.

Article (CrossRef Link)

[3] S. Takagi, I. Fujishiro, and M. Nakajima, “Volumetric modeling of colored pencil drawing,” in

Proc. of Pacific Graphics 1999, pp. 250-258 , 1999. Article (CrossRef Link)

[4] A. Lake, C. Marshall, M. Harris, and M. Blackstein, “Stylized rendering techniques for scalable

real-time 3D animation,” in Proc. of NPAR 00, pp.13-20, 2000. Article (CrossRef Link)

[5] X. Mao, Y. Nagasaka, and A. Imamiya, “Automatic generation of pencil drawing using LIC,” in

ACM Siggraph 02 Abstractions and Applications, pp. 149, 2002. Article (CrossRef Link)

[6] N. Li, and Z. Huang, “A feature-based pencil drawing method,” in Proc. of 1st International

Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia

03, pp. 135-140, 2003. Article (CrossRef Link)

[7] S. Yamamoto, X. Mao, and A. Imamiya, “Enhanced LIC pencil filter,” in Proc. of the

International Conference on Computer Graphics, Imaging and Visualization 04, pp. 251-256,

2004. Article (CrossRef Link)

[8] S. Yamamoto, X. Mao, and A. Imamiya, “Colored pencil filter with custom colors,” in Proc. of

Pacific Graphics 04, pp. 329-338, 2004. Article (CrossRef Link)

[9] H. Matsui, J. Johan, and T. Nishita, “Creating colored pencil images by drawing strokes based on

boundaries of regions,” in Proc. of Computer Graphics International 05, pp. 148-155, 2005.

Article (CrossRef Link)

[10] K. Murakami, R. Tsuruno, and E. Genda, “Multiple illuminated paper textures for drawing

strokes,” in Proc. of Computer Graphics International 05, pp. 156-161, 2005. Article (CrossRef

Link)

[11] H. Lee, S. Kwon, and S. Lee, “Real-time pencil rendering,” in Proc. of NPAR 06, pp. 37-45, 2006.

Article (CrossRef Link)

[12] K. Melikhov, F. Tian, X. Xie, and H. S. Seah, “DBSC-based pencil style simulation for line

drawings,” in Proc. of 2006 International Conference on Game Research and Development, pp.

17-24, 2006. Article (CrossRef Link)

[13] D. Xie, Y. Zhao, D. Xu, and X. Yang, “Convolution filter based pencil drawing and its

implementation on GPU,” Lecture Notes in Computer Science, vol. 4847, pp. 723-732, 2007.

Article (CrossRef Link)

[14] Z. Chen, J. Zhou, X. Gao, L. Li and J. Liu, “A novel method for pencil drawing generation in

non-photo-realistic rendering,” Lecture Notes in Computer Science, vol. 5353, pp. 931-934, 2008.

Article (CrossRef Link)

[15] Y. Kim, J. Yu, H. Yu, and S. Lee, “Line-art illustration of dynamic and specular surfaces,” ACM

Trans. on Graphics, vol. 27, no. 5, 2008. Article (CrossRef Link)

[16] Z. AlMeraj, B. Wyvill, T. Isenberg, A. Gooch, and G. Richard, “Automatically mimicking unique

hand-drawn pencil lines,” Computers & Graphics, vol. 33, no. 4, pp. 496-508, 2009. Article

(CrossRef Link)

[17] M. Salisbury, S. Anderson, R. Barzel, and D. Salesin, “Interactive pen-and-ink illustration,” in

Proc. of Siggraph 94, pp. 101-108, 1994. Article (CrossRef Link)

[18] G. Winkenbach and D. Salesin, “Computer generated pen-and-ink illustration,” in Proc. of

Siggraph 94, pp. 91-100, 1994. Article (CrossRef Link)

[19] M. Salisbury, C. Anderson, D. Lischinski, and D. Salesin, “Scale-dependent reproduction of

pen-and-ink illustrations,” in Proc. of Siggraph 96, pp. 461-468, 1996. Article (CrossRef Link)

[20] M. Salisbury, M. Wong, J. Hughes, and D. Salesin, “Orientable textures for image-based

pen-and-ink illustration,” in Proc. of Siggraph 97, pp. 401-406, 1997. Article (CrossRef Link)

[21] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in Proc. of Siggraph 00, pp. 517-526,

2000. Article (CrossRef Link)

[22] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-time hatching,” in Proc. of Siggraph 01,

pp. 579-584, 2001. Article (CrossRef Link)

[23] M. Webb, E. Praun, A. Finkelstein, and H. Hoppe, “Fine tone control in hardware hatching,” in

Proc. of NPAR 02, pp. 53-58, 2002. Article (CrossRef Link)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3512
http://portal.acm.org/citation.cfm?id=311625.312375&coll=DL&dl=ACM&CFID=35530662&CFTOKEN=10468748
http://dx.doi.org/doi:10.1145/340916.340918
http://dx.doi.org/doi:10.1145/1242073.1242162
http://dx.doi.org/doi:10.1145/604471.604498
http://dx.doi.org/doi:10.1109/CGIV.2004.1323994
http://dx.doi.org/doi:10.1109/PCCGA.2004.1348364
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1500406&queryText%3DCreating+colored+pencil+images+by+drawing+strokes+based+on+boundaries+of+regions%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://dx.doi.org/doi:10.1109/CGI.2005.1500408
http://dx.doi.org/doi:10.1109/CGI.2005.1500408
http://dx.doi.org/doi:10.1145/1124728.1124735
http://portal.acm.org/citation.cfm?id=1234341.1234347&coll=DL&dl=ACM&CFID=35530662&CFTOKEN=10468748
http://dx.doi.org/doi:10.1109/CADCG.2007.4407878
http://www.springerlink.com/content/ehp182p7843q1266/
http://portal.acm.org/citation.cfm?id=1457515.1409109&coll=DL&dl=ACM&CFID=35530662&CFTOKEN=10468748
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.6486
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.6486
http://dx.doi.org/doi:10.1145/192161.192185
http://dx.doi.org/doi:10.1145/192161.192184
http://dx.doi.org/doi:10.1145/237170.237286
http://dx.doi.org/doi:10.1145/258734.258890
http://dx.doi.org/doi:10.1145/344779.345074
http://dx.doi.org/doi:10.1145/383259.383328
http://dx.doi.org/doi:10.1145/508530.508540

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1327

[24] J. Bu, W. Yan, C. Chen, and M. Song, “Image-based real-time hatching of scene traveling,” in

Proc. of WSCG, vol. 14, no. 1-3, pp. 241-248, 2006. Article (CrossRef Link)

[25] A. Paiva, E. Brazil, F. Petronetto, and M. Sousa, “Fluid-based hatching for tone mapping in line

illustrations,” The Visual Computer, vol. 25, no. 5-7, pp. 519-527, 2009. Article (CrossRef Link)

[26] H. Yang and K. Min, “Texture-based Hatching for Color Images and Video,” KSII Transactions

on Internet and Information Systems, vol. 5, no. 4, pp. 763-781, 2011. Article (CrossRef Link)

[27] P. Haeberli, “Paint by numbers: abstract image representations,” in Proc. of Siggraph 90, pp.

207-214, 1990. Article (CrossRef Link)

[28] B. Meier, "Painterly rendering for animation,” in Proc. of Siggraph 96, pp. 477-484, 1996. Article

(CrossRef Link)

[29] P. Litwinowicz, “Processing images and video for an impressionist effect,” in Proc. of Siggraph

97, pp. 406-414, 1997. Article (CrossRef Link)

[30] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple sizes,” in Proc. of

Siggraph 98, pp. 453-460, 1998. Article (CrossRef Link)

[31] J. Hays and I. Essa, “Image and video based painterly animation,” in Proc. of NPAR 04, pp.

113-120, 2004. Article (CrossRef Link)

[32] K. Zeng, M. Zhao, C. Xiong, and S. C. Zhu, “From image parsing to painterly rendering,” ACM

Trans. on Graphics, vol. 29, no. 1, 2009. Article (CrossRef Link)

[33] H. Kang, S. Lee, and C. Chui, “Flow-based image abstraction,” IEEE Trans. on Visualization and

Computer Graphics, vol. 15, no. 1, pp. 62-76, 2009. Article (CrossRef Link)

Appendix A

The overall process of pencil rendering

Input: a photograph

Output: pencil rendered image

// step 1. Noise generation

 noise  generate noise by pseudocode (A);

// step 2. Vectorizing feature lines

 feature lines  vectorize feature lines by the algorithm in 3.2;

// step 3. fLIC

 fLIC  feature LIC using noise and feature lines by pseudocode (B);

// step 4. tLIC

 tLIC  tone LIC using noise and feature lines by pseudocode (C);

// step 5. Merging

 LIC  merging fLIC & tLIC by pseudocode (D);

 return LIC as the result of pencil rendered image;

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.167
http://portal.acm.org/citation.cfm?id=1536175
http://www.freepatentsonline.com/article/KSII-Transactions-Internet-Information-Systems/259155828.html
http://dx.doi.org/doi:10.1145/237170.237288
http://dx.doi.org/doi:10.1145/237170.237288
http://dx.doi.org/doi:10.1145/258734.258893
http://dx.doi.org/doi:10.1145/280814.280951
http://dx.doi.org/doi:10.1145/987657.987676
http://dx.doi.org/doi:10.1145/1640443.1640445
http://dx.doi.org/doi:10.1109/TVCG.2008.81

1328 Yang et al.: Feature-guided Convolution for Pencil Rendering

Heekyung Yang received her B.S. degree in Digital Media from Sangmyung

University, Seoul, Korea, in 2010. She is currently a M.S. student in the same

college. Her major is computer graphics, especially NPR(non-photorealistic

rendering). Also she is interested in image processing, 3D-mesh processing, volume

rendering and medical rendering.

Kyungha Min received his BS in Computer Science from KAIST in 1992. He

received his MS and Ph.D in Computer Science and Engineering from POSTECH

in 1994 and 2000, respectively. His main research interests are computer graphics

and image processing.

