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Abstract 
 

We describe a method to decompose a cube with trilinear interpolation into a collection of 
tetrahedra with linear interpolation, where the isosurface topology is preserved for all 
isovalues during decomposition. Visualization algorithms that require input scalar data to be 
defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with 
topological correctness. As one of many possible examples, we apply the decomposition 
method to topologically accurate tetrahedral mesh extraction of an interval volume from 
trilinear volumetric imaging data. The topological correctness of the resulting mesh can be 
critical for accurate simulation and visualization. 
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1. Introduction 

Scientific simulations and measurements often generate real-valued volumetric data in the 
form of function values sampled on a three dimensional (3D) rectilinear grid. Trilinear 
interpolation is a common way to define a function inside each cell. It is computationally 
simple and provides a good estimation of a function between sampled points in practice. 
Isosurface extraction is one of the most popular techniques for visualizing the volumetric data. 
An isosurface is a level set surface defined as }),,(|),,{()( wzyxFzyxwI == , where F is 
a function defined from the data and w is an isovalue. The isosurface I is often polygonized for 
modeling and rendering purposes. We call I a trilinear isosurface to distinguish it from a 
polygonized isosurface when F is a piecewise trilinear function. Similarly, (trilinear) interval 
volume, }),,(|),,{(),( βαβα ≤≤= zyxFzyxV , is defined as a subvolume enclosed by 
two boundary isosurfaces with isovalues α  and β .  

Although the rectilinear volumetric data is the most common form, many visualization 
techniques [1][2][3][4][5][6] require a tetrahedral grid domain due to its simplicity. People 
generally decompose each cube into a set of tetrahedra where a function is defined by linear 
interpolation, to apply such techniques to rectilinear volumetric data. The decomposition may 
significantly distort the original trilinear function in terms of its isosurface topology and 
geometry. (See [7] for examples.) 2D/3D meshes with undesirable topologies extracted from 
the distorted function may cause a serious problem of inaccuracy in various simulations, such 
as Boundary Element Method (BEM) and Finite Element Method (FEM), when the extracted 
meshes are used as geometric domains for the simulation [6].  

The main contributions of this paper are : 
 topology preserving tetrahedral decomposition of a cube with trilinear interpolation 
 application to trilinear interval volume tetrahedrization 

We describe a rule for tetrahedral decomposition of a cube where isosurface topology in the 
cube is preserved for all isovalues during the decomposition. The main idea of our method is to 
insert saddle points and connect them to the corner vertices of a cube to generate tetrahedra. In 
case there is no saddle point, we perform the conventional 6-fold decomposition without 
inserting additional vertices. The collection of tetrahedra involves a minimal set of vertices 
that can correctly capture  the level set topology of a trilinear function because the level set 
topology changes only at critical points. 

The typical usage of this method is to convert a rectilinear domain of volumetric data into a 
tetrahedral grid form with topology preservation. Since our method maintains consistent 
topology during the data conversion, it significantly improves the accuracy of modeling and 
visualization. Various visualization algorithms that require input scalar data to be defined on a 
tetrahedral grid can utilize this method to process 3D rectilinear data with topological 
correctness. 

As an example, we apply our method to topologically accurate interval volume 
tetrahedrization from trilinear volumetric data. We use a well known method [5] to 
tetrahedrize an interval volume within a tetrahedral cell based on a pre-defined lookup table. 
For dealing with a rectilinear data, a 5-fold or 6-fold decomposition has been mostly used to 
convert it into a tetrahedral grid form, which might cause topologically inaccurate results. 
Since our decomposition method preserves the topology of all the isosurfaces inside a cube, 
adopting our method instead of the 5-fold or 6-fold decomposition generates a topologically 
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correct interval volume. The topological correctness can be critical for accurate simulation 
(e.g. FEM), when the resulting meshes are used as geometric domains for the simulation. 
Besides correct topology, mesh quality that is also an important factor for accurate simulation 
can be improved using quality improvement methods [8][9]. 

The remainder of this paper is organized as follows. In section 2, we review related work on 
tetrahedral decomposition and trilinear isosurfaces. In section 3, we explain the trilinear 
isosurface and its topology determination. In section 4, we describe topology preserving 
tetrahedral decomposition of a trilinear cell. In section 5, we apply tetrahedral decomposition 
methods to trilinear interval volume tetrahedrization. Section 6 reports experimental results. 
Finally, we conclude this paper in section 7. 

2. Related Work 
A cube can be decomposed into five or six tetrahedra without inserting additional points, or 
even more tetrahedra with insertion of cube and face centroids [10]. Carr et al. [7] reported a 
visualization result and visual artifacts for each decomposition method. Schroeder et al. [11] 
described a consistent tetrahedral decomposition of cells in any arbitrary adaptive grid. The 
simplicity of tetrahedral grids generated from those methods was utilized by various 
visualization applications, such as contour tree construction [2], isosurface triangulation [12], 
interval volume tetrahedrization [5], volume rendering [13], and particle tracing [14]. 
However, none of those methods consider preservation of the isosurface topology in a trilinear 
function during the decomposition. 

A trilinear isosurface inside a cube can have complex topology and geometry that requires 
sophisticated procedures for correct reconstruction.  Marching Cubes (MC) [10] is the most 
popular method to extract a piecewise linear approximation of an isosurface. It visits each 
cubical cell and performs local triangulation depending on a sign configuration of eight 
vertices of the cell1. Some of the sign configurations have ambiguity in triangulation and may 
generate an inconsistent triangular mesh with a crack on an isosurface. The ambiguity of 
contour connectivity on a face can be resolved by taking saddle points, called face saddle of 
the bilinear function on the face and comparing the saddle value to an isovalue [15]. This 
method generates a consistent triangular mesh of an isosurface but the topology of the 
extracted isosurface may not be correct due to a topological ambiguity inside a cell. Natarajan 
[16] used a saddle point inside a cell, called body saddle, in a similar manner to resolve the 
internal ambiguity and compute the correct topology of a trilinear isosurface in the cell. 
Cignoni et al. [17] applied adaptive refinement of the triangular isosurface mesh generated 
using Natarajan's method to guarantee user defined geometric accuracy. Chernyaev [18] and 
Nielson [19] listed every possible trilinear isosurface topology with corresponding conditions. 
Lopes and Brodlie [20] provided accurate triangulation for each case. These topologically 
correct isosurfacing methods cannot be directly applied to interval volume tetrahedrization 
due to the high complexity of the tetrahedrization for a cube. Fujishiro et al. [21] used a set 
operation to compute polyhedral solid approximation of an interval volume for each cube.  

                                                           
1 The sign of a vertex is positive if the function value on the vertex is greater than an isovalue, and negative in the 
other case. 
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Fig. 1. Possible isosurface topology of trilinear interpolant [20] 

3. Trilinear Isosurface Topology 

The function inside a cube, cF , is constructed by trilinear interpolation of values on eight 
vertices of the cube. 

zyxFzyxFzyxF c )1)(1()1)(1)(1(),,( 001000 −−+−−−=  

                   yzxFzyxF )1()1()1( 011010 −+−−+  

                   zyxFzyxF )1()1)(1( 101100 −+−−+  

                   xyzFzxyF 111110 )1( +−+  

This means the function , fF , on any face of a cube is a bilinear function computed from four 
vertices of the face. 

xyFyxFyxFyxFyxF f
11100100 )1()1()1)(1(),( +−+−+−−=  

Saddle points, where their first partial derivative for each direction is zero, play important 
roles in determining the correct topology of a trilinear isosurface inside a cube. The result of 
computing the location of face and body saddles that satisfy 0== f

y
f

x FF  and 

0=== c
z

c
y

c
x FFF  respectively is described in [20]. Saddle points outside the cube are 

ignored. 
It is well known that some of the sign configurations of the eight vertices in a cube have 

ambiguities in determining contour connectivity. The papers [20] and [16] show that 
additional sign configurations of the face and body saddle points can disambiguate the correct 
topology of a trilinear isosurface. Fig. 2 illustrates a 2D example of the ambiguity problem and 
its disambiguation through triangular decomposition based on a saddle point. Fig. 1 shows 
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every possible isosurface connectivity of a trilinear function where symmetric cases are 
ignored [20]. The correctness of our topology preserving tetrahedral decomposition method is 
proved by showing that an isosurface defined in the tetrahedral decomposition and a trilinear 
isosurface inside a cube are topologically equivalent for any sign configurations of saddle 
points and the eight corner vertices of the cube. The overall idea is presented in Fig. 3 by 
showing the topology preserving decomposition rule for the 2D case which is much simpler 
than 3D case. 
 

 
 

Fig. 2. Triangular decomposition of a face, connecting a face saddle to each edge of the face, resolves an 
ambiguity in determining contour connectivity and allows correct contour reconstruction. 

 

 
 

Fig. 3. Triangular subdivision of a rectangle preserves the isosurface topology of a bilinear function for 
all possible cases. 

 4. Topology Preserving Tetrahedral Decomposition (TPTD) 
We describe a method to decompose a cube with trilinear interpolation into a collection of 
tetrahedra with linear interpolation where isosurface topology is preserved for all isovalues 
during the decomposition. We call this method TPTD. The tetrahedral decomposition is 
consistent for the entire rectilinear volumetric data in the sense that the tetrahedra are 
seamlessly matched on a face between any two adjacent cubes.  

The main idea of TPTD is to insert the saddle points and connect them to the corner vertices 
of a cube in order to generate tetrahedra in the same manner as the 2D case shown in Fig. 3. 
Since the isosurface topology changes at critical points, the saddle points must be included in 
TPTD if there are any inside the cube. TPTD for a 2D rectangle is simple because there are 
only two possibilities, either a face saddle exists on the rectangle or it does not. However, 
TPTD for a 3D cube is extremely complex compared to the 2D case because there are two 
different kinds of saddles, face and body, and there can be zero, one, or two of the latter. For 
dealing with the high complexity, we separate the different cases based on the analysis of the 
face and body saddles inside a cube and provide a consistent decomposition rule for each case.  

Let bs  and fs  be the number of body saddles and face saddles respectively. There are five 
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cases based on the number of face saddles and body saddles, (i) 0=bs  and 0=fs , (ii) 

0=bs   and 41 ≤≤ fs , (iii) 1=bs  and 40 ≤≤ fs , (iv) 0=bs  and 6=fs , and (v) 

21 ≤≤ bs  and 6=fs . The most complicated case occurs when there are six face saddles. It 

requires special treatment. We deal with the case of 0=bs and 21 ≤≤ bs , separately. Note 
that the number of face saddles cannot be five. The number of body saddles cannot be two, 
unless the number of face saddles is six. The decomposition rule for each case is as follows : 

 case (i) : Decompose a cube into six tetrahedra (6-fold decomposition [7]). 
 case (ii) : Choose one face saddle and decompose a cube into five pyramids by 

connecting the face saddle to the four corner vertices of each face except the one that 
contains the face saddle. If the rectangular face of a pyramid contains a face saddle, the 
face is decomposed into four triangles that share the face saddle and the pyramid is 
decomposed into four tetrahedra. If the face of the pyramid does not contain a face 
saddle, the pyramid is decomposed into two tetrahedra in a consistent manner. If the 
number of face saddles is three or four, we need to choose the second biggest face 
saddle. 

 case (iii) : Decompose a cube into six pyramids by connecting a body saddle to the four 
corner vertices of each face of a cube. As is the case in (ii), if the rectangular face of a 
pyramid contains a face saddle, the face is decomposed into four triangles and the 
pyramid is decomposed into four tetrahedra. Otherwise, the pyramid is decomposed 
into two tetrahedra.  

 case (iv) : A diamond is created by connecting the six face saddles. The diamond is 
decomposed into four tetrahedra. Twelve tetrahedra are created by connecting the two 
vertices of each of the twelve edges in a cube and the two face saddles on the two faces 
which share the edge. Eight tetrahedra are created by connecting each of the eight faces 
in the diamond and a corresponding corner vertex of the cube. This will decompose a 
cube into twenty four tetrahedra. (Fig. 4 (c)) 

 case (v) : Fig. 5 (a) and (b) show the cell decomposition when there are two body 
saddles and six face saddles. It generates two pyramids and four prisms, where 
pyramids and prisms are further decomposed into tetrahedra (Fig. 5 (c)). We choose any 
two parallel faces that are connected to body saddles to form pyramids. We classify 
saddle points as three small face saddles, a small body saddle, a big body saddle, and 
three big face saddles based on increasing order of the saddle values. Let the small/big 
corner vertex be the vertex adjacent to the three faces with small/big face saddles. The 
two parallel faces with the small and big face saddles are connected to small and big 
body saddles respectively to form the two pyramids. The four prisms are decomposed 
into tetrahedra such that the small corner vertex should not be connected to the big body 
saddle and the big corner vertex should not be connected to the small body saddle. Two 
types of decomposition of a prism are possible that satisfy this constraint as shown in 
Fig. 5 (c). In case 1=bs , we consider as if a small or big body saddle moves to a face 
saddle of a pyramid that is connected to the body saddle and hence the pyramid is 
collapsed. In this case, the pair of parallel faces for forming the pyramids is chosen such 
that the face saddle of the collapsed pyramid should not be the smallest or the biggest 
one 

Fig. 4 shows several examples of applying theTPTD rule to a cube with a different number 
of body and face saddles. In the Appendix, we give a brief proof of topology preservation 
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during TPTD. 
                   

  
(a) 0=bs  , 2=fs  (b) 1=bs  , 2=fs  (c) 0=bs , 6=fs  

Fig. 4. Example of TPTD for different cases 
 

 
(a)  (b) (c) 

 
Fig. 5. (a) Cell decomposition when two body saddles exist. Dark blue, green, light blue, magenta, 

brown, and red circles represent small corner vertex, small face and body saddles, big body and face 
saddles, and big corner vertex, respectively. (b) Isosurface topology for different isovalues in the case of 

(a). (c) Tetrahedral decomposition of pyramids and prisms. 

5. Trilinear Interval Volume Tetrahedrization 

5.1 Basic Method Using TPTD 

Interval volume [21], }),,(|),,{(),( βαβα ≤≤= zyxFzyxV , is a generalized form of an 
isosurface that is defined as a subvolume between two boundary isosurfaces. Tetrahedral 
meshes that approximate an interval volume are widely used for scientific simulations, such as 
FEMethod [9], as well as for visualization [21]. Topologically and geometrically accurate 
tetrahedral meshing is crucial for accurate simulation and visual exploration of the data. 

Nielson and Sung [5] constructed a lookup table to extract tetrahedral meshes for an interval 
volume in a tetrahedron. If data are defined on a 3D rectilinear grid, they convert the data into 
a tetrahedral form by performing a decomposition method that generates five tetrahedra from 
each cube. By using TPTD instead of the 5-fold decomposition, we can extract a topologically 
correct tetrahedral mesh of a trilinear interval volume. 

Fig. 7 shows that even the most complex interval volume inside a cube can be correctly 
tetrahedrized. Two boundary trilinear isosurfaces are visualized. After applying 
tetrahedrization for each tetrahedral cell generated by TPTD, we could extract topologically 
correct tetrahedral meshes for the interval volume. 
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5.2 Efficiency Enhancement Using Simplified Tetrahedral Decomposition 
We can enhance the efficiency using a simplified tetrahedral decomposition (STD) method 
when a cubic cell contains one of no boundary isosurfaces of an interval volume. STD 
generates a smaller number of tetrahedra from a cube than TPTD does. For example, if a cube 
is completely inside an interval volume, STD generates six tetrahedra, whilst TPTD may 
generate between six and thirty tetrahedra depending on the sign configurations of the vertices 
in the cube. Unlike TPTD, STD is designed to preserve isosurface topology for one selected 
isovalue during decomposition. Therefore, performing interval volume tetrahedrization from 
STD of a cube gives a topologically correct result if the cubic cell contains at most one 
boundary isosurface. In this section, we describe STD and a means to combine STD and TPTD 
for efficient and topologically correct tetrahedrization of a general interval volume. 
Simplified Tetrahedral Decomposition (STD) The goal of STD is to provide tetrahedral 
decomposition of a cube, where isosurface topology is preserved for one selected isovalue. 
This is done by removing facial and internal ambiguities for isosurface reconstruction. A facial 
ambiguity is resolved by decomposing a face into four triangles that share a face saddle point. 
Likewise, internal ambiguity is resolved by decomposing a cube into six pyramids that share a 
body saddle point. If there is an internal ambiguity, and the isosurface does not contain a 
tunnel shape (a.k.a. neck), a body saddle point is not necessary in the cell decomposition for 
correct reconstruction. 

There are four cases : (i) no face ambiguity and no tunnel, (ii) face ambiguity (less than six) 
and no tunnel, (iii) a tunnel, and (iv) six face ambiguities and no tunnel. 

 case (i) : perform 6-fold decomposition. 
 case (ii) : choose a face saddle on a face with ambiguity2. Next, decompose a cube into 

five pyramids by connecting the face saddle into the four corner vertices of each face, 
except the face that contains the face saddle.  

 case (iii) : decompose a cube into six pyramids by connecting a body saddle that is 
involved with a tunnel to the four corner vertices of each face of the cube. 

 case (iv) : perform the same decomposition as for case (iv) in section 4. ( 13(a) in Fig. 
6 ) 

If the rectangular face of a pyramid generated from case (ii) and (iii) has a face ambiguity, 
the face is decomposed into four triangles that share the face saddle so that the pyramid is 
decomposed into four tetrahedra. Otherwise, the face is decomposed into two triangles by 
connecting the two diagonal vertices so that the pyramid is decomposed into two tetrahedra. 
Isosurface configurations 1, 2, 5, 8, 9, and 11 in Fig. 1 are the only possible cases that do not 
have an ambiguity in a cube. 6-fold decomposition is sufficient for such cases. The 
configuration 4.1.1 is an exceptional case that has an internal ambiguity with no face 
ambiguity and no tunnel. This case can be handled by type-4(a) decomposition in Fig. 6.  
We applied STD to each case in Fig. 1, and extracted a triangular isosurface. Fig. 6 shows the 
cell decomposition and its triangulation for every possible configuration of a trilinear 
isosurface. The comparison of Fig. 1 and Fig. 6 confirms that the triangular isosurface 
generated from STD is topologically equivalent to a trilinear isosurface. 

 

                                                           
2 If there are three faces with ambiguities, we need to choose the third ambiguous face where the order is based on 
the function value of the face saddle. This is necessary to correctly reconstruct configuration 7.2 and 7.3. 
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Fig. 6. Simplified tetrahedral decomposition (STD) and triangulation for each case. 
 

Efficient Tetrahedrization of Trilinear Interval Volume By Combining STD and TPTD 
(CTD) STD preserves the topology of only one boundary isosurface. If there are two boundary 
isosurfaces of an interval volume inside a cube, tetrahedral meshes extracted from the 
decomposition may not be topologically correct. For efficient and topologically correct 
reconstruction of the general interval volume in each cube, we apply TPTD to a cube that 
contains two boundary isosurfaces and apply STD to a cube that contains one or no boundary 
isosurfaces. However, the mesh may not be consistent on a face between two neighboring 
cubes, where one cube is decomposed using TPTD and the other is decomposed using STD. 
Note that this inconsistency occurs only when STD contains two triangles and TPTD contains 
four triangles on the shared face, respectively. In such a case, we choose a pyramid of STD that 
contains the shared face and replace the pyramid with four tetrahedra that can be generated by 
connecting the top point of the pyramid to each of the four triangles on the face. We term this 
method CTD, which combines STD and TPTD in a consistent manner. CTD coupled with the 
Nielson and Sung’s method guarantees to generate topologically correct and consistent 
tetrahedral meshes for a trilinear interval volume. 

6. Results 
We implemented the TPTD, STD, CTD and 6-fold decomposition methods. We used them to 
convert the rectilinear grid of volumetric data into a tetrahedral grid. Applying Nielson and 
Sung's method [5] to each tetrahedron of the data, we extracted tetrahedral meshes that 
approximate an interval volume. The extracted meshes were topologically equivalent to the 
ideal trilinear interval volume when TPTD or CTD was applied. The result of STD is 
equivalent to that of CTD unless there is a cubic cell that contains two boundary isosurfaces. 
We measured the performance of each method by counting the number of tetrahedra for the 
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extracted interval volume and the time for decomposition and interval volume tetrahedrization. 
We tested several volumetric data sets defined on rectilinear grids, a signed distance function 
(SDF) dataset and real datasets generated by Magnetic Resonance Imaging (MRI) and 
Computed Tomography Angiography (CTA). Since the original MRI dataset was too large, 
we tested two subregions, tumor and breast. The experimental results are summarized in 
Table 1. Our results were computed on a desktop PC equipped with an Intel Pentium Dual 
Core CPU (2.40GHz) and 2GB main memory. 

As shown in Fig. 8 (b) and (c), TPTD correctly reconstructs trilinear interval volume, whilst 
the result applying 6-fold decomposition has topological artifacts. Fig. 8 (d) and Fig. 9 (d) 
show the TPTD and CTD correctly reconstruct a very thin interval volume. CTD is generally 
more efficient than TPTD in terms of the resulting interval volume mesh size, whilst the 
accuracy is equivalent to that of TPTD. However, the usage of CTD is limited to trilinear 
interval volume tetrahedrization. TPTD can be applied to general visualization techniques that 
require tetrahedral decomposition. There are only small performance differences in the results 
of SDF(knee) and MRI(tumor) because the data sets are topologically simple. On the other 
hand, the MRI(breast) data is reasonably complex, so the result clearly shows the performance 
difference. It seems that the timing results do not have significant differences among the 
methods. The markd regions of Fig. 9 (b) and (c) show that TPTD generates more mesh 
elements without achieving better geometric or topological accuracy than CTD. 

Table 1. Results on the number of mesh elements and the time for decomposition and extraction. 

 

  
(a) Bounday isosurfaces (b) Cell Decomposition (c) Interval Volume (d) Wireframe 

Fig. 7. Interval volume extraction for two boundary isosurfaces with complex geometry and topology 
inside a cube that has two body saddles and six face saddles. The tetrahedral meshes (c) extracted from 

TPTD (b) correctly approximate trilinear interval volume (a). 

Data Resolution α , β  TPTD STD CTD 6-fold 

SDF 32x32x32 -4.5,-0.9 22862 
(31ms) 

22303 
(31ms) 

22303 
(31ms) 

22239 
(32ms) 

SDF(thin) 32x32x32 -2.0,-0.9 24442 
(31ms) 

24114 
(31ms) 

24242 
(32ms) 

24049 
(32ms) 

MRI(tumor) 32x32x32 80.1, ∞ 12988 
(16ms) 

12092 
(15ms) 

12092 
(16ms) 

12092 
(16ms) 

MRI(breast) 169x171x90 30.1, ∞ 6028469 
(6218ms) 

5448297 
(6157ms) 

5448297 
(6490ms) 

5384223 
(5985ms) 

MRI(thin) 32x32x32 80.1,89.5 15574 
(16ms) 

15058 
(15ms) 

15270 
(15ms) 

15058 
(15ms) 

CTA(aorta) 128x128x128 168, ∞ 2002507 
(2339ms) 

1676844 
(2118ms) 

1676844 
( 2497ms) 

1663861 
(1975ms) 
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Fig. 8. Trilinear interval volume tetrahedrization of a knee SDF data. The comparison of regions 
marked with red circles shows that our method (TPTD) correctly reconstructs the boundary isosurfaces 

of a trilinear interval volume while 6-fold decomposition cannot. 
 

 

Fig. 9. Trilinear interval volume tetrahedrization of a breast lesion (MRI). The comparison of regions 
marked with red circles shows that CTD allows more efficient interval volume tetrahedrization than 

TPTD does while it is as accurate as TPTD even for extracting thin interval volume. 
 

We also tested our method with the CTA dataset which is more complex than the other 
datasets. As shown in Fig. 10, the dataset contains a spine and an abdominal aorta, the 
boundary surfaces of which should be separated. Boundary isosurfaces of interval volumes 
extracted from (e) TPTD are topologically equivalent to (c) ideal trilinear isosurfaces. 
However, the boundary isosurfaces for spine and aorta are connected when (d) 6-fold 
decomposition is applied. The wrong topology in the extracted meshes may give rise to critical 
inaccuracy especially when used in a computional simulation.  

Table 2 and Table 3 provide an additional comparion between TPTD and CTD based on 
the number and relative ratio of cubic cells that belong to each case. We counted only the cells 
that intersected the interval volume. The result confirms that CTD is generally more efficient 
than TPTD in terms of the generated mesh size. For example, in CTD of CTA dataset, the 
number of cells that belong to case (i) is 182788 (99.5%), which means that almost all cubic 
cells are decomposed with the simple 6-fold method. On the other hand,  the number of cells 
for TPTD is 132800 (72.3%) and TPTD requires more complex decompositions for  27.7% of 
cubic cells.  
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(a) Volume Rendering (b) Isosurface  (c) Ideal Trilinear Isosurface 

 
(d) 6-Fold Decomposition (e)  TPTD 

Fig. 10. Trilinear interval volume tetrahedrization of CT Angiography (CTA) data. (α =168, β  =∞ ). 
The region marked with a blue box in (b) is magnified in (c)~(e). 

 
Table 2. The number and ratio of cubic cells for each case when TPTD is applied to each dataset. Only 

cells that intersected the interval volume specified by α and β were considered. 

 
Table 3. The number and ratio of cubic cells for each case when CTD is applied to each dataset. Only 
cells that intersected the interval volume specified by α and β were considered. 

 

Data α , β  Number and Ratio of Cubic Cells for TPTD 
case (i) case (ii) case (iii) case (iv) case (v) Total 

SDF 
(32x32x32) 

-∞ ,-0.9 2055 
(94.6%)

114 
(5.2%) 

3 
(0.1%) 

0 
(0.0%) 

0 
(0.0%) 

2172 
(100%)

MRI 
(169x171x90) 30.1,∞  514929

(83.9%)
88648 

(14.4%)
10340 
(1.7%) 

1 
(0.0%) 

0 
(0.0%) 

613918
(100%)

CTA 
(128x128x128) 168, ∞  132800

(72.3%)
47214 

(25.7%)
3559 

(1.9%) 
61 

(0.03%)
80 

(0.04%) 
183714
(100%)

Data α , β  CTD : Number and Ratio of Cubic Cells 
case (i) case (ii) case (iii) case (iv) Total 

SDF 
(32x32x32) 

-∞ ,-0.9 2162 
(99.5%) 

10 
(0.5%) 

0 
(0.0%) 

0 
(0.0%) 

2172 
(100%) 

MRI 
(169x171x90) 30.1, ∞  609796 

(99.3%) 
3997 

(0.7%) 
125 

(0.0%) 
0 

(0.0%) 
613918 
(100%) 

CTA 
(128x128x128) 168, ∞  182788 

(99.5%) 
888 

(0.5%) 
38 

(0.0%) 
0 

(0.0%) 
183714 
(100%) 
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7. Conclusion 
We described a method for tetrahedral decomposition of a cube where isosurface topology is 
preserved for all isovalues. We applied our method to topologically correct tetrahedrization of 
an interval volume from trilinear volumetric data. We envision that many visualization 
algorithms, which can take only tetrahedral grid data, can utilize our method to deal with 
trilinear volumetric data, instead of using simple 5-fold or 6-fold tetrahedral decomposition 
methods that may significantly distort the isosurface topology and geometry. 
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Appendix : Proof of Topology Preservation During TPTD 
Consider a cube where a trilinear interpolation and TPTD are applied. The proof is done by 
showing that, for any isovalue inside a cube, (i) the PL(piecewise linear) isosurface is 
topologically equivalent to the trilinear isosurface on each face of the cube, and (ii) the 
topologies are equivalent inside the cube. Note that a PL isosurface inside a cube should 
always be manifold (except for a degenerate case).  There can be no closed PL isosurface 
component inside a cube. 

First, it is easy to see that the decomposition preserves trilinear isosurface topology on each 
face. For each face of a cube, TPTD decomposes it into four triangles when there is a face 
saddle, otherwise it is decomposed into two triangles. Three contour connectivities are 
possible, except for the case of no contour on a face, where symmetric cases are ignored. Fig. 
3 shows that each isocontour connectivity of a bilinear function on a face is preserved for any 
possible triangular mesh generated from our decomposition rule.  

Second, we show that TPTD preserves the topology of the trilinear isosurface inside a cube. 
We classify each of the corner vertices and saddle points of TPTD into either up-vertex or 
down-vertex based on whether the function value on it is greater than an isovalue or not. The 
connected components of either the up-vertices or down-vertices uniquely represent  
isosurface components. We consider only the case where the connected components of the  
up-vertices uniquely represent isosurface components. We ignore the other case, since it is 
symmetric, as shown in Fig. 1, where the up-vertices among the corner vertices are marked 
with black solid circles. If the connected components of the trilinear isosurface are separated 
inside a cube, the connected components of the corresponding up-vertices should be also 
separated, and vice versa. Consider cases (i), (ii), and (iii). If there is no hole, the connected 
components of the up-vertices on the faces are separated from each other inside a cube in order 
to form a simple sheet (disk) for each connected component, which is consistent with the 
actual trilinear isosurface topology. If there is a hole, the connected components of up-vertices 
on faces are connected through a body saddle point inside a cube to form a tunnel isosurface 
component. The reason why we choose the second biggest face saddle in case (ii) with three or 
four face saddles and (v) with one body saddle is to avoid connecting components of the 
up-vertices inside a cube that need to be separated. For example, if we choose the smallest or 
the biggest face saddle in configuration 7.2, two components of the up-vertices on the faces of 
a cube can be connected through an edge. Hence, two separate isosurface components would 
be connected by a tunnel.  

Fig. 11 is an example showing that TPTD preserves the topology of the trilinear isosurface 
for configuration 6.1.1 and 6.1.2 when a cube has one body saddle and one face saddle. Since 
TPTD performs topology preserving triangular decomposition for each face (as shown in Fig. 
3), the PL isocontour on each face is topologically correct. The connected components of the 
up-vertices on the faces uniquely represent isocontour components (closed red contours in (a)). 
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