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Abstract 
 

The performance of a tracking system is greatly increased if multiple types of sensors are 
combined to achieve the objective of the tracking instead of relying on single type of sensor. 
To conduct the multi-modal tracking, we have previously developed a multi-modal 
sensor-based tracking model where acoustic sensors mainly track the objects and visual 
sensors compensate the tracking errors [1]. In this paper, we find a network synchronization 
problem appearing in the developed tracking system. The problem is caused by the different 
location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the 
captured sensor data at a processing server. To effectively deliver the sensor data, we propose a 
time-based packet aggregation algorithm where the acoustic sensor data are aggregated based 
on the sampling time and sent to the server. The delivered acoustic sensor data is then 
compensated by visual images to correct the tracking errors and such a compensation process 
improves the tracking accuracy in ideal case. However, in real situations, the tracking 
improvement from visual compensation can be severely degraded due to the aforementioned 
network synchronization problem, the impact of which is analyzed by simulations in this paper. 
To resolve the network synchronization problem, we differentiate the service level of sensor 
traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor 
allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) 
algorithm. From the simulations, we show the traffic differentiation model can mitigate the 
non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the 
tracking system in terms of acoustic sampling interval and visual image size. 
 
 
Keywords: Object tracking, multi-modal sensor network, visual compensation, network 
synchronization problem, time-based packet aggregation algorithm, delay-based weight 
allocation 
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1. Introduction 

In addition to sensor devices passively and single-functionally operating in general sensor 
networks, more complicated functions such as object tracking and reliable monitoring 
functions are added into the sensor nodes to construct a navigation and surveillance system. 
For tracking methods, the authors in [2] propose the time-delay estimation methods that 
approximate location based on the time delay of arrival of signals at the receivers. On the other 
hand, direct tracking methods are proposed in [3][4], in which the frequency-averaged output 
power of a steered beamformer are used. These two traditional tracking methods have the 
drawbacks under the reverberant indoor environment which frequently generates 
extraordinary signals. In order to overcome this problem, Particle Filtering(PF)-based 
state-space approaches are proposed in [5][6][7]. The PF method considers to be a powerful 
methodology for nonlinear and non-Gaussian signal processing problems [8][9][10][11][12] 
[13]. However, in many PF-based tracking systems, initial state is not clear, so that PF tracking 
system may have lost the target object even with a known dynamic model. Moreover, incorrect 
dynamic model and corrupted observation lead to continuous wrong estimation of the object 
trajectory which is called trajectory divergence problem. Other than the PF-based models, the 
tracking systems with visual cameras are also investigated in [14][15][16]. In these research 
efforts, multiple cameras are used to extract the real position information of the target objects.  

If multiple types of sensor data are combined, the weakness of each type of sensor can be 
compensated by other types and also they can assist each other to have better measurement. 
Moreover, they are more adaptive and robust in diverse environment as a specific sensor can 
be less sensitive to a certain condition of environment. The authors in [17] have proposed a 
mixed method of an acoustic-based PF algorithm and a visual tracking. In the approach, the 
visual camera mainly performs tracking task and the acoustic sensor assists the task. In general, 
the visual image processing needs high computational power compared with the PF algorithm 
calculation. Therefore, the reduction of complexity is critical to the operation of the system.  

In order to reduce the computational complexity, we have developed a new tracking system 
model in [1] where the low computational acoustic-based PF primarily tracks the objects and 
two visual sensors resolve the unclear initial state and trajectory divergence problems inherent 
in the PF algorithm. In other words, the acoustic sensor detects two angle components 
(azimuth angle θ, elevation angle φ) using three dimensional acoustic localizer, and PF 
algorithm associated with the acoustic sensor obtains the coordinate information of the target 
object. At this point, the visual images captured from visual sensors are used to correct the 
tracking errors of acoustic sensors by supportive tasks such as position initialization, detecting 
of silent movement, and compensation of the deviated tracking from acoustic signal. However, 
the outcomes in [1] assume that multiple visual sensors capture the tracking space with no time 
difference, the PF and visual algorithms activate as soon as the acoustic and visual sensors are 
sampling object information, and the visual compensation results are immediately applying to 
the next PF state generation. The assumptions are not applicable to real situations since the 
sampling and calculation points generally locate in different places, and the non-synchronized 
sampling and data arrival take place in the middle of tracking.  

This paper addresses a network synchronization problem caused by the absence of the 
aforementioned assumptions. After both visual sensors capture the tracking space 
independently, they need to send the images to a processing server. At the different time, the 
PF estimates from acoustic sensors also arrive at the server with different end-to-end delivery 
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delay. The server should determine whether the visual compensation process needs to be 
performed based on the acoustic and visual sampling times. If the server generates the 
compensated position estimation based on PF estimates and visual images, it sends feedback 
data to acoustic sensor to correct the possible estimation errors in the PF calculation. In order 
to model the developed tracking system, we configure a distributed wireless tracking network 
in which routers have a role in backbone nodes and acoustic sensors are sampling object 
information under the communication range of the routers. Both visual sensors are located at 
appropriate positions to efficiently capture the tracking space with sufficiently different angles. 
When the routers deliver the acoustic data, they use the proposed time-based packet 
aggregation algorithm. In the algorithm, a router checks whether the sampling time of the 
packet is the most recent one after it receives a packet from an acoustic sensor. If it is true, the 
packet is saved for future aggregation operation. After the router receives new sampling times 
from all the acoustic sensors, it aggregates all the packets and sends the aggregated packet to a 
server. Based on the aggregation algorithm, the PF estimates from acoustic sensor are 
efficiently delivered to a server with removing unnecessary network resources consumed to 
deliver a number of acoustic data.  

From the simulation study, we show the increased tracking accuracy from joint operation of 
multiple sensor types severely deteriorates when acoustic sensors use short sampling interval, 
and non-sensor traffic volume flowing the wireless tracking network increases. For the 
possible solutions of the performance degradation, we propose a traffic differentiation model. 
The basic idea of the model is that we can solve the skewed end-to-end delivery delay of 
sensor traffic and non-sensor traffic by adopting different network queues and Weighted 
Round Robin (WRR) scheduling mechanism at routers. The weight allocated to each queue is 
obtained by a proposed Delay-based Weight Allocation (DWA) algorithm. In the 
differentiation model, we first obtain the end-to-end delivery delay of sensor data from 
multi-modal sensors to a server. Based on ratio of the obtained delay, we allocate normalized 
scheduling weight to each network queue. From the simulations, we show the differentiation 
model mitigates the network synchronization problem, so that the tracking system provides 
the sustainable support of visual sensors to correct the PF estimation errors. In the observation 
of the tracking system, we identify the successful visual compensation depends on the key 
parameters: sampling interval of acoustic sensors and the end-to-end delivery delay of 
multi-modal sensor data. Therefore, in the next work, we investigate the tracking system 
behaviors in terms of the two key parameters.  

Organization of this paper is as follows. In Section 2, we illustrate the details of the 
developed multi-modal tracking system and define problems to be resolved. The basic 
environment for network synchronization in object tracking is illustrated in Section 3, and the 
performance evaluation of network synchronization and traffic differentiation model is shown 
in Section 4. We conduct the behavior analysis of the tracking system in Section 5 and finally 
conclude in Section 6.  

2. Background and Problem Definition 

2.1 Tracking by Particle Filter  
Particle Filtering (PF) [13] is a powerful method for sequential signal processing for nonlinear 
and non-Gaussian problems. It is broadly used in applications that need the tracking and 
detection of random signals. The algorithm is also based on its operations on representing 
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relevant densities by discrete random measures composed of particles and weights, and 
computes integrals by Monte Carlo methods [10]. In the tracking problem based on PF, the 
measuring outputs from an acoustic sensor are bearings or angles (Zt) on the grid along the 
perpendicular coordinates at time t. Based on the angle information, we can get the estimated 
position ( )tt yx ~,~  and velocity ( )tytx vv ,,

~,~  in the cartesian coordinate system. At the next 
acoustic sampling time, t +1, we can get the next angle (Zt+1) and corresponding outputs based 
on the previous PF estimates. In this tracking method, we obtain more accurate position 
estimates as we increase the number of particles. 

1) Tracking Problems: In PF-based applications, there are two key problems preventing 
accurate tracking process. The first one is the initial state problem where initial state may not 
be reliable and sometimes is not existing. For example, in the beginning of the tracking or 
when the signal from an object re-appears after silence movement or blocking obstacle, we can 
consider the cases as the initial state problem. Since the PF application assumes the initial state 
is clearly given, the PF approximation outputs will show significant deviation from the real 
object trajectory in the presence of the initial state problem. The trajectory divergence problem 
is another key problem that appears in many PF applications. The object dynamic model could 
change in the middle of tracking even with the given initial state. The change with or without 
the initial state results in the tracking to be diverged. Since the next PF estimation is based on 
the current state vector, the deviated state vector in current time will lead to further erroneous 
tracking in the wrong direction.  

2) Possible Solutions: The aforementioned tracking problems can be solved by multiple 
dynamic model [18][19], multiple acoustic sensor detection [20], and audio-visual 
multi-modal tracking algorithm [17]. Especially, the last multi-modal algorithm has recently 
been active research domain due to its accuracy and fast implementation. In [17], the visual 
sensor mainly tracks the object and an acoustic sensor supports the tracking when the object 
disappears from the visual space. However, in realtime point of view, the complexity of image 
processing becomes an overhead factor. Therefore, the authors in [1] have adopted a low 
computing acoustic sensor for the main tracking device and the visual sensor compensates the 
tracking deviation caused by acoustic-based PF outcomes.  

2.2 Tracking by Visual Sensor  
Visual localization algorithm is performed to extract the object position estimation from 
captured visual image. It is based on the parallel projection model [21], which simply 
approximates the position with a known reference point, ),( rrr yxP . Arbitrary point on a 
camera or an estimate obtained by PF algorithm could be the reference point. The algorithm 
assumes both cameras can capture the target object at the same time. In the algorithm, the 
reference point is projected on the viewable planes of both cameras, and the object points 
appeared in the camera sensing planes are also projected on the viewable planes. Let the 
projected point of reference point be ),( i

v
i
v

i
v yxP =  and the projected point of sensing plane be 

),( i
s

i
s

i
s yxP = , where i is the camera id and takes 1 and 2. Then, we can obtain the distance Δdi 

between the projected points as i
s

i
vi PPd =Δ . If we assume the each viewable plane of camera 1 

and 2 forms x and y cartesian coordinate respectively, the estimated object position is obtained 
by ),(),( 21 dydxyxP rreee Δ±Δ±= . 

2.3 Target Application Model 
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The target application model in our approach is based on the integration of an acoustic sensor 
and two visual sensors as shown in Fig. 1. A three dimensional acoustic localizer is located at 
an acoustic sensor to get the direction of arrival (DOA) [22]. The localizer detects two angle 
components (azimuth angle θ, elevation angle φ) from the arrival time difference between 
embedded adjacent microphones. The PF associated with acoustic sensor mainly obtains the 
coordinate information of the moving object, and supportive tasks such as position 
initialization, detecting of silent movement, and compensation of the deviated tracking from 
acoustic signal are done by two visual sensors. The visual sensors require to be located in 
appropriate positions to capture the object with sufficient angles which are used in the 
localization algorithm in Section 2.2. Fig. 1 shows that four microphones measure interaural 
time differences of an object. By scaling the speed of wave propagation and the unit 
dimensions of the microphones array, the θ and φ angles are derived.  
 

 
Fig. 1. Target application model for object tracking. It consists of an acoustic sensor and two visual 

sensors to capture the object information. The dashed line means the lost of the acoustic signal in the 
middle of object moving. 

2.4 Visual Compensation Effect 

st

tΔ vt tΔ

ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7 ti+8

 
Fig. 2. Sampling time sequence of an acoustic sensor and visual sensors. Red arrow is the acoustic 

sampling time and the blue is the sampling point of the visual sensors. 
 
In the visual compensation process, the operation of visual sensor is independent of the 
acoustic sensor’s operation. Fig. 2 shows an example of sampling time sequence possibly 
occurring in the application model. The acoustic sensor samples the object signal by ts interval 
and the visual sensors capture the tracking space every tv. In this case, both sampling tasks 
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have the time difference Δt. If the Δt is in [0, ts], the visual localization algorithm can be 
successfully performed to correct the tracking error in the PF-estimate. Here, the visual 
localization algorithm uses the PF estimate for the reference point. For example, if we consider 
the compensation at time ti+5, acoustic estimate at ti+4 becomes the reference point.  

We observe the advantage of the visual compensation assisting the PF-based tracking 
system in the remainder of this section. The advantage appears when the multi-modal sensors 
independently operate like Fig. 2. For the observation, we use non-linear model with 
semi-triangular movement where an acoustic sensor is placed at (0,0) of a cartesian coordinate 
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(a) Without visual compensation                          (b) Visual compensation(tv=50ts) 

(Only PF-based tracking) 

 
(c) Visual compensation(tv=10ts)                        (d) Visual compensation(tv=5ts) 

 
Fig. 3. Tracking accuracy when the visual sensor assists the PF-based tracking. Red line represents the 
real object movement, and the blue line is the trajectory estimate obtained by associating an acoustic 

sensor with two visual sensors. 
 

Fig. 3 shows the simulation results for the various sampling interval of visual sensors. tv 
takes 50, 10, or 5 times longer than the sampling interval of acoustic sensors. The target object 
is moving along the red line, and the trajectory estimate is indicated by blue line. In Fig. 3(a), 
only PF-based estimate has large deviation from real object movement. However, when we 
associate two visual sensors with an acoustic sensor creating the PF estimate, we can increase 
the tracking accuracy in proportion to the visual sampling frequency. When tv=50ts, the 
trajectory estimate roughly follows the object movement with large variation as shown in Fig. 
3(b). As we increase the visual sampling frequency to 10ts, the trajectory estimate is almost the 
same as the object movement as shown in Fig. 3(c). In more visual sampling frequency like 
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tv=5ts, the trajectory estimate becomes more accurate as shown in Fig. 3(d). Note the 
processing overhead of PF is a few microseconds as indicated in [23], and the localization 
algorithm for visual compensation is performed rarely compared with the PF calculation. 
Therefore, our application model can minimize the overall processing overhead for the 
tracking task as well as provide the accurate tracking task.  

2.5 Network Synchronization Problem in the Application Model 
Even if we have mentioned the visual compensation provides significant improvement in 
tracking accuracy in previous section, it requires some assumptions: (1) two visual sensors 
capture the tracking space with no time difference, (2) as soon as acoustic and visual sensors 
are sampling object information, the PF and visual localization algorithms should calculate the 
position estimation without time delay, and (3) the visual compensation results are 
immediately applying to the next PF state generation. However, the sampling and the 
calculation points generally locate in different places, so that there exists a synchronization 
problem caused by the end-to-end delivery delay of sensor data in the tracking system. 
 

visual sensor 1

visual sensor 2

acoustic sensor

Router

Server

ti ti+2

ti+1

1vtΔ
2vtΔ

atΔ

stΔ

 
Fig. 4. Network synchronization problem in the tracking model. 

 
Fig. 4 indicates the factors to be considered in the tracking model at the network point of 

view. At ti, an acoustic sensor receives the object signal, and the visual sensor 1 and 2 take the 
image at time ti+1 and ti+2, respectively. Based on concepts in the previous section, ti+1 = ti +Δtv1 

and ti+2 = ti +Δtv2, where Δtv1 and Δtv2 are sampling time difference between acoustic and visual 
sensor 1 and 2. If we assume the PF calculation is done at acoustic sensor, and the visual 
localization is done at a remote computing machine, namely, server, the PF-based position 
estimate and the visually sampled data need to be sent to the server via network routers. In this 
situation, the PF estimate requires to arrive at the server with end-to-end delivery delay Δta, 

and the image frames taken by visual sensor 1 and 2 arrive at the server after Δtv1 and Δtv2 
delays. Additionally, the visual compensation estimate at the server needs to be re-sent to the 
acoustic sensor with delay Δts for the adjustment of the next PF calculation. We define a 
tracking problem caused by the end-to-end delivery delay in visual compensation process as 
network synchronization problem. The independent delivery delay of sampled data in addition 
to sampling time difference among multi-modal sensors causes the network synchronization 
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problem, so that we address how to tackle the problem in the remainder of this paper. 

3. Network Synchronization for Object Tracking 

3.1 Configuration of Wireless Tracking Network 
In order to support the tracking task, we consider a wireless tracking network connecting the 
multi-modal sensors and a server. This is a type of distributed wireless network since the 
algorithm processing points are distributed in the network to support the tracking task. 
 

Server
Router

acoustic 
sensor

visual 
sensor 1

visual 
sensor 2

object
 

Fig. 5. An example of the wireless tracking network. 
 

Fig. 5 shows an expected configuration of the tracking network. Routers are communicating 
each other by wireless channel and the last mile router is connected to a server. More than one 
acoustic sensor sample and send the object information to the router. Two visual sensors are 
connected to routers and independently send the visual image to the server. The PF calculation 
is done at the acoustic sensor and the visual localization algorithm having more complexity is 
performed at the server. The localization algorithm could be performed at the routers. 
However, as we have indicated in [24], the fully distributed tracking architecture has large 
end-to-end delivery delay of the visual image since the visual sensors have to send the same 
image to all the routers, which causes heavy traffic in the network. Note the image size from a 
visual sensor is relatively larger than the packet from acoustic sensor. For example, when we 
capture the visual space by IP camera [25], the size of image frame is within the range of 30 to 
55 KBytes. Therefore, we adopt the server-based architecture to reduce the duplicate 
transmission of the same image as well as to use the high computational power of the server. 

3.2 Time-based Packet Aggregation of Acoustic Sensor Data 
The first problem to be solved in the network synchronization is how to deliver to the server 
the object information from more than one acoustic sensor in a timely manner. For this 
problem, we propose a time-based packet aggregation algorithm as described in Algorithm 1. 
Whenever a packet from an acoustic sensor is coming to the router, the router first checks if the 
sampling time (ti) of the packet is the most recent one. The received packet is inserted into a 
Queue until the router receives packets having the most recent sampling time from all the 
acoustic sensors. If ti of the packet is older than the previously saved sampling time (Ti), the 
packet is dropped. If the router receives the packets with the latest time, it makes an aggregated 
packet (Pa) and sends it to the next hop router. At this point, we need to save the sampling time 
of the dequeued packet (Ti = ti) for the next comparison of the sampling times. We assume that 
the sampling point of the acoustic sensors are same, which can be realized by regularly 
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sending SYN packets from the router to acoustic sensors to adjust the distorted sampling point. 
By using the aggregation algorithm, we can reduce the network traffic and end-to-end delay of 
the acoustic sensor data as well as simplify the visual compensation process since the acoustic 
data can arrive at the server at the same time. Since the sampling interval at acoustic sensors 
relatively larger than the end-to-end delivery delay of sensor data between acoustic sensors 
and a router, we can ignore the impact of waiting time to aggregate packets from acoustic 
sensors. 
 

Algorithm 1: Time-based packet aggregation algorithm to deliver the data packets of more 
than one acoustic sensors. 
Pi: a packet currently arriving at a router. It is originated from 
acoustic sensor i. 
Qi: a packet being queued in a Queue. It belongs to acoustic sensor i. 
Pa: an aggregated packet to be sent to the next hop router. 
na: the number of acoustic sensors in the range of the router. 
Pa ={ }∅ , Ti = 0, i=1...na 
// Check the sampling time of the incoming packet is the latest one 
c=0 
for i=1 to na do 

ti = sampling time of Pi 
if Ti < ti then 

c = c+1 
else drop(Pi) 

end 
// Make an aggregated packet based on sampling time 
if c is equal to na then 

for i=1 to na do 
dequeue(Qi) 
ti = sampling time of Qi 
Ti = ti 
Pa = {Pa ∪  Qi} 

end  
send(Pa) 
Pa ={ }∅  

else  
enqueue(Pi) 

end 

3.3 Visual Compensation Considering Network Synchronization 
The next problem in the tracking task is to identify visual compensation in network 
synchronization point of view. To clarify the point, we show a packet flowing example in Fig. 
6 possibly appearing in the system. This traffic pattern could happen in a situation that an 
object’s signal frequently disappears, so that visual image is sent as many as possible to detect 
the object trajectory. Similar to Fig. 2, the acoustic sampling times are denoted by red arrows 
and blue arrows are for visual image capturing points. We additionally add red points to 
represent the calculation of the visual localization algorithm at the server side. Since the visual 
compensation estimates are re-sent to the acoustic sensor for the next PF adjustment, we add 
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the black arrows to represent the feedback arrival at the acoustic sensor. When a router is ready 
to send an aggregated acoustic packet to a server, it sends the packet with delivery delay a

itΔ  
(i=1,2,3,...). The visual sensor 1 and 2 also send the captured image frame to the server with 
delay 1v

itΔ  and 2v
itΔ , respectively. After finishing visual localization algorithm, the server 

sends the compensated PF-estimate to the acoustic sensor. This feedback transmission takes 
s
itΔ  delay. Note that the delay size of multi-modal sensor data is different in times since the 

tracking network has a number of delay factors like router capacity and background traffic 
volume. In other words, the delivery delay takes randomness property. If we compare this 
example with Fig. 2, the visual compensation process needs to be differently interpreted. For 
example, the t9 in Fig. 6 could be a successful visual sampling time under the illustration of 
Fig. 2 since it is within t8 to t14, which means Δt is within the [0, ts]. However, in this example, 
the sampling time t7 of the second visual sensor is not between t8 and t14 due to the different 
image capturing point of visual sensors. This indicates the first assumption in Section 2.5 does 
not valid in real situation. Therefore, the image from second visual sensor may give the wrong 
information to the estimation procedure. In this case, we would better use visual images 
captured at t10 and t11 since they more precisely contain the tracking space between t8 and t14. 
Even if the visual images seem to capture the tracking space in timely manner, they do not 
provide good information with the visual compensation process when we consider the delivery 
delay ( st2Δ ) of feedback data that reaches the acoustic sensor at t15. The arriving point is 
between t14 and t21 that is a new acoustic sampling period. For st2Δ  delay time, the object can 
have abrupt moving behavior in which case the information at t15 can also give the negative 
information to the PF estimation. Fortunately, we have another feedback arrival at t20, and the 
feedback gives a right information to the next PF calculation at t21. This complicated situation 
takes place since the second and third assumptions in Section 2.5 are not applicable to the real 
environment. 
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Fig. 6. Packet flowing example appearing in the tracking model. 

3.4 Definition of Success and Fail Conditions 

To clearly define when the visual localization algorithm can be executed and what is the 
success in the visual compensation process, we make two conditions as follows. 

Condition 1: The server sees that the sampling times of both visual sensors are later than the 
acoustic sampling time of previously arrived acoustic data. At this point, the server performs 
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the localization algorithm. 

Condition 2: The compensated estimate should be feedbacked to acoustic sensors before the 
next acoustic sampling time. 

Fig. 7 shows the message flowing diagram between sensors, router and server, and possible 
success and fail cases occurring in the tracking model. In the figure, the messages related with 
acoustic sensors are directly delivered from source to destination since they are delivered by 
UDP. On the other hand, the visual sensor data need reliability so that TCP is used for the 
transferring. Since the visual image size is larger than Maximum Transmission Unit (MTU) 
size, more than one packet are exchanged between visual sensors and a server. Similar to Fig. 
6, we use red and blue arrows, and red point to indicate the generation of the acoustic, visual 
sampling, and the execution point of localization algorithm. We can find out only Fig. 7(a) 
satisfies the Condition 1 and Condition 2 at the same time. Note in Fig. 7(c) and (d), the final 
result is not success due to the network synchronization problem even if the localization 
algorithm calculation at the server side is successful. 
 

acoustic
sensor

router server 

…

(a) success

router server router
visual 

sensor 1,2server 

ti+2

ti+3

ti

router server 

visual 
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visual 
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(b) fail
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ti+1

acoustic
sensor

acoustic
sensor

acoustic
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ti+1

ti+2

ti+2

ti
ti+1
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Fig. 7. An example of success and fail cases in the tracking model. 

4. Performance Evaluation of Network Synchronization and Traffic 
Differentiation Model 
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4.1 Impact of Network Synchronization 

 

R2 R3 R4R1 serverR0

A0

A1 A2

A3

A4 A5

A6

A7 A8

A9

A10 A11

A12

A13 A14

V1

V2
 

Fig. 8. String scenario for the tracking model. Acoustic senors, visual sensors and routers are denoted by 
Ai, Vi, and Ri (i =0, 1, ...), respectively. 

 
In this section, we investigate the impact of network synchronization problem by simulation 
study. We use NS-2 simulator to build up a scenario of the developed tracking system as shown 
in Fig. 8. Even if its configuration is simple in terms of routers, the tracking complexity is 
affected by the number of acoustic sensors and tracking objects. Since the acoustic 
sensor-router communication delay is separate from the router-router transmission and can be 
minimized by packet aggregation, we believe it suffices to configure a line of routers for 
characterizing the impact of network synchronization and traffic pattern analysis of the 
developed tracking system. Five routers are communicating each other with 54Mb/s 802.11a 
single channel wireless link with 0.0005 uniformly distributed Bit Error Rate (BER). We turn 
off the RTS/CTS to reduce the network traffic overhead. Three acoustic sensors are located 
within the communication range of each router to send and receive data. The wireless channel 
between acoustic sensor and router is different to the channel of router-router links to reduce 
the interference. We assume each acoustic sensor is tracking five moving objects. The server is 
connected to last mile router R4, and two visual sensors are attached onto R1 and R3 to 
effectively capture the tracking space with different angles. The image frames generated by 
visual sensors are fixed by 40KByte size and we generate 10Kb/s, 0.5Mb/s, and 1Mb/s 
non-sensor (background) traffic by Constant Bit Rate (CBR). For the visual sampling interval, 
we set it up as tv =10ts, where the ts takes various values: 0.1, 0.2, 0.3, and 0.4 seconds. The 
simulation time is 200 seconds.  

Fig. 9 shows how many visual compensation process can be successful when the network 
synchronization is considered in the tracking system. It plots the number of success in visual 
compensation at each acoustic sensor. The black point lines are for the ideal case achieved 
based on the Fig. 2. For example, if the acoustic sensors are sampling the object signal with ts 
=0.1 second, correspondingly tv =1.0 second, we expect the visual compensation in ideal case 
will be performed 200 times. However, Fig. 9(a) indicates that in real situation represented by 
red point line, no visual compensation is performed when ts =0.1. This is due to the end-to-end 
delivery delay of sensor data, especially, visual images. Note 10Kb/s background traffic could 
be considered to be equal to a network with only multi-modal sensor traffic. When we measure 
the end-to-end delivery delays of 40KBytes visual image under even lower 1kb/s background 
traffic, we obtain 0.117 and 0.035 seconds of delivery delay for visual sensor 1 and 2. Since the 
visual sensor 1 is far away from the server, its delay is larger than that of the second visual 
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sensor and we can conjecture the compensation performance mainly depends on the large 
delay of the visual sensor 1. This result indicates that we can not realize visual compensation 
when we try to track a fast moving object with ts =0.1 even in no background traffic. When the 
background traffic increases to 0.5Mb/s and 1Mb/s, the visual sensors can not assist the 
PF-based object tracking in small ts values. Especially, the network synchronization problem 
leads to around zero visual compensation for all the ts values in 1Mb/s background 
environment as shown Fig. 9(c). 
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Fig. 9. Impact of network synchronization problem in the tracking system 

4.2 Possible Solutions for Network Synchronization Problem  
1) Adjustment of Sampling Time: A simple solution for the network synchronization is 
achieved from changing the sampling interval of acoustic sensors. For example, in the 
existence of 1Mb/s background traffic in the previous section, we can eliminate the 
non-synchronization by increasing the ts to 0.8 second. This solution makes it satisfied with 
both Conditions mentioned in Section 3.4. However, this solution has difficulty in supporting 
the visual-assisted tracking for fast moving objects, so that there exists a limitation of tracking 
accuracy. 

2) Traffic Differentiation Model: Network delivery delay, especially, the large image 
exchanging delay between visual sensors and a server is critical to the network 
synchronization. From this fact, we propose a sensor traffic differentiation model by using 
Weighted Round Robin (WRR) scheduling mechanism to be installed into routers. The basic 
idea of the model is that we can balance the network delay among the multi-modal sensor 
traffic and non-sensor traffic by using WRR, and eliminate the non-synchronization problem 
appearing in the tracking network. 
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Fig. 10. Reference model for traffic differentiation. 

 
Fig. 10 shows the reference model for the traffic differentiation. It has four separate queues 

and each queue is assigned to visual sensor 1 and 2, acoustic sensor, and miscellaneous 
non-sensor traffic. The feedback from a server to acoustic sensors delivering visual 
localization results is assigned to the second queue. If the service rate of a router is µ, each 
queue is served by a service weight factor wv1, wv2, wa, or wn. Here, we propose a weight 
allocation algorithm, Delay-based Weight Allocation (DWA) to determine the weight factor. 
In DWA, we first categorize the traffic into sensor and non-sensor traffic and assign weight into 
them. Let cs and cn be the allocated weights for sensor and non-sensor traffic and cs + cn = 1. 
Then, we need to perform fine grained weight allocation of cs into the three different sensor 
queues, which is conducted based on the end-to-end delivery delay of each sensor type. The 
fine grained weight allocation is done by two rounds. In the first round, we need to measure the 
end-to-end delivery delay from multi-modal sensors to a server. Here, we will follow the 
notation of Fig. 4. Each value can be easily obtained since at the Service side, we can know the 
generation time and the arrival time of the sensor data. In the second round, we can obtain the 
weight allocation based on the measured delays. Let’s define the total measured delay dt as: 

avv
t tttd Δ+Δ+Δ= 21                                                        (1) 

Based on the dt, we get the weight factors as follows: 
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where nw′ is obtained from dt based on the ratio of the categorized weight allocation. In order 

to normalize them, we define navvt wwwww ′+′+′+′= 21 , and get the final DWA formula as: 
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where 121 =+++ navv wwww . The accomplished DWA weight factor is now applied for the 
service differentiation in the next router executions. 

Fig. 11 shows the simulation result under the 0.5Mb/s and 1.0Mb/s background traffic 
environments when traffic differentiation model is applied into the tracking system. We 
compare the number of success of the proposed model with that of normal case in which only 
one queue serves the sensor and non-sensor traffic. For the categorized weights, we set them 
up by cs : cn = 0.9 : 0.1 to support the fast transmission of the sensor data. In the first round, we 
assign the identical weight for each queue such as 25.021 =+++ navv wwww . 
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Fig. 11. Simulation results when traffic differentiation model is applied to the tracking system, where ts 

= 0.2 and tv = 10ts. 
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Fig. 12. Star scenario for the tracking model. Each branch uses different channel to reduce the channel 

interference. 
 

In the second round, the initial weights are changed like wv1 =0.732, wv1 =0.222, wa =0.043, 
and wn =0.003 by means of DWA calculation. The simulation result is obtained only when ts 
=0.2. Note that as indicated in Section 4.1, the tracking system achieves no number of success 
in visual compensation at ts=0.1 since the pure end-to-end delivery delay of visual sensor 1 is 
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larger than 0.1 second. Thus, ts=0.1 case is not plotted in the figure. We also do not plot the 
cases of ts=0.3, 0.4 under 0.5Mb/s and 1Mb/s background since we achieve the same number 
of success as the ideal case when we apply the traffic differentiation model into the tracking 
system. When we remind that there is no success in Fig. 9(c) in any ts values, we understand 
the differentiation model can efficiently mitigate the non-synchronization in network. To save 
the space, we do not plot the case of 10Kb/s background situation since the result is same as 
Fig. 9(a). When we observe the plot for 0.5Mb/s background traffic case, the differentiation 
model applying the DWA achieves almost the same as the ideal case even if the normal case 
which reflects the network synchronization problem shows the unbalanced visual 
compensation. Since the acoustic sensor 0 to 5 are far from the server, their packet end-to-end 
delivery delays are larger than the delays of other acoustic sensors. Therefore, we obtain the 
unbalanced curve in normal case. For the 1.0Mb/s background environment, differentiation 
model also provides more number of success than the normal case even if the result is affected 
by the background traffic volume. 

In order to investigate the effect of traffic differentiation model in more complicated 
scenario, we show the number of successful visual compensation from a star scenario with 
three branches in Fig. 12. Each branch takes the same configuration as Fig. 8. Since the heavy 
interference between sensors and routers, each branch uses different wireless channel for data 
exchange. The simulation parameter setting is also same as the Fig. 8.  
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Fig. 13. The number of success in the visual compensation when traffic differentiation model is applied: 

0.5 Mb/s background. Here, ts = 0.2 and tv = 10ts. 
  

Fig. 13 shows the simulation results under 0.5 Mb/s background traffic in the star scenario. 
Due to the same reason as Fig. 11, we only plot the result from only ts =0.2. We observe that 
the DWA provides almost the same as the ideal number of success for 36 acoustic sensors. 
However, the Normal case shows large variation and low successful visual compensation 
result. For the case of 1.0 Mb/s background traffic, Fig. 14 contains the plots for ts =0.2, ts =0.3, 
and ts =0.4. We can find out that the Normal case supports below 10 success even in ts =0.4 due 
to network synchronization problem caused by the complex tracking scenario. However, the 
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traffic differentiation model efficiently resolves the network synchronization problem and 
provides significant improvement of the success in the visual compensation process. When ts 
=0.3 and ts =0.4, the differentiation model provides the same as the ideal number of success. 
However, in DWA, ts =0.2, the contention for the network resource between large volume of 
acoustic sensor data and visual sensor data causes large fluctuation among acoustic sensors 
even with better number of success than Normal case. 
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Fig. 14. The number of success in the visual compensation when traffic differentiation model is applied: 

1.0 Mb/s background. Here, tv = 10ts. 
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Fig. 15. Estimated trajectory of a target object under traffic differentiation model. 

 
In order to investigate how the trajectory estimate of object movement changes when the 

differentiation model is applied, we show the tracking results in Fig. 15. This is the result only 
for DWA,bg=1.0Mb/s case in Fig. 11. Since the differentiation model provides the same 
results as the ideal case in DWA,bg=0.5Mb/s, the trajectory estimation in the case is almost the 
same as the real object movement. The trajectory estimation in Fig. 15(a) reveals that the 
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differentiation model provides reasonably accurate tracking outcome in acoustic sensor 0 to 11 
even with a little bit large deviation from real object movement. Note that the trajectory 
estimation of acoustic sensor 0 to 11 under non-differentiation model has the result in Fig. 3(a) 
since the normal one queue model achieves around zero success in visual compensation. The 
acoustic sensor 12 to 14 show better trajectory estimation in Fig. 15(b) since they are assisted 
with more success of visual compensation. 

5. Behavior Analysis of the Tracking System 
From the observation of the developed tracking system, we can understand the successful 
visual compensation mainly depends on the sampling interval of the acoustic sensor and the 
image delivery delay. Therefore, in this section, we investigate the accuracy of a tracking 
system in terms of the two parameters.  

5.1 Performance Metric 
In order to represent the success and fail cases mentioned in Section 3.4 by a numeric value, 
we define a new performance metric applicable to the tracking system. We call it Successful 
Compensation Rate (SCR) and define it as: 

SCR=
t

s

n
n                                                                   (4) 

where ns is the number of successful compensation that satisfies both conditions in Section 3.4 
and nt is the total number of sampling of an object signal at an acoustic sensor. If total running 
time of the tracking system is T , nt = T/ts. If a tracking model achieves large SCR value, the PF 
algorithm is highly compensated by localization algorithm, so that we can more accurately 
track the target object. Therefore, the SCR metric can be a gauge to determine the tracking 
accuracy of the established tracking system. Note the accomplished SCR reflects the network 
synchronization problem. 
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Fig. 16. Tree scenario for the tracking model. Due to the line-of-sight characteristics of visual sensors, 

we install 4 visual sensors. 
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5.2 Behavior Analysis  
1) Simulation Setup: In order to observe the system behaviors, we perform the simulations 
based on the scenarios in Fig. 8 and a more complex tree scenario as shown in Fig. 16. Visual 
sensors generate image frame of 20, 40, and 60 KBytes size. We observe the behaviors based 
on the acoustic sampling interval of 0.1, 0.15, 0.2, 0.3, and 0.4. For the tree scenario, we set up 
the same communication link as Fig. 8, and only two acoustic sensors work in the 
communication range of each router. Each acoustic sensor tracks five objects. We assume that 
both branches of the tree cannot guarantee the line-of-sight characteristics of a visual sensor, 
so that we install two visual sensors for each branch.  

2) Simulation Results: Fig. 17 shows the simulation results achieved from string scenario. We 
plot the SCR variations of 15 acoustic sensors. Let’s assume the both tracking scenarios need 
SCR = 0.6 to detect the object trajectory. Then, in 20KBytes image size, the acoustic sensors 
do not need to capture the object signal with ts < 0.3 since the network synchronization 
problem blocks the on-time transmission of the sensor data for the visual compensation. If the 
visual sensors generate 40KBytes image, only ts =0.4 supports the expected SCR value. In case 
of 60KBytes, all the simulated sampling times do not support the stable object tracking.  
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Fig. 17. SCR results achieved in string scenario. 

 

For the tree scenario, we plot only SCR result for 20KBytes image size in Fig. 18 since the 
other cases support no visual compensation. This is because the complex network confi
guration leads to the large end-to-end delivery delay of the visual image to a server. Even in 
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20KBytes, only acoustic sensor 4 and 5 which are near the server support the expected SCR = 
0.6. 
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Fig. 18. SCR results achieved in tree scenario when image size is 20Kbytes. 

6. Conclusions 
The research works in this paper is based on our developed tracking system in which acoustic 
sensors mainly track target object with Particle Filter (PF) algorithm and the assisting 
functions to eliminate the estimation error inherent in PF are done by visual sensors 
performing localization algorithm. Based on the developed tracking system, this paper has 
identified the network synchronization problem caused by unbalanced delivery delay of sensor 
data between multiple sensor types. For example, visually captured image size is larger than 
the acoustic sensor data size, so that visual images arrive at a processing server later than 
acoustic sensor data. In this situation, the server performs the visual compensation only when 
the sampling times of the sampled data satisfy the successful condition for visual 
compensation. In order to efficiently deliver the acoustic sensor data to a server, we have 
proposed a time-based aggregation algorithm.  

For the possible solution for the non-synchronization problem in a network, we separate the 
network queues to differently serve the sensor traffic and non-sensor traffic. The traffic 
differentiation model is achieved by Weight Round Robin (WRR) where the weights are 
allocated based on our proposed Delay-based Weight Allocation (DWA) algorithm. We have 
shown that the differentiation model sufficiently mitigates the unbalance in end-to-end 
delivery delay of sensor data and supports high level of visual compensation assistance. 
Finally, we have investigated the behavior of the tracking system in terms of acoustic sampling 
interval and visual image size. 
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