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Abstract 
 

This paper introduces DICE, a Domain-Independent text Classification Engine. DICE is 
robust, efficient, and domain-independent in terms of software and architecture. Each module 
of the system is clearly modularized and encapsulated for extensibility. The clear modular 
architecture allows for simple and continuous verification and facilitates changes in multiple 
cycles, even after its major development period is complete. Those who want to make use of 
DICE can easily implement their ideas on this test bed and optimize it for a particular domain 
by simply adjusting the configuration file. Unlike other publically available tool kits or 
development environments targeted at general purpose classification models, DICE 
specializes in text classification with a number of useful functions specific to it. This paper 
focuses on the ways to locate the optimal states of a practical text classification framework by 
using various adaptation methods provided by the system such as feature selection, 
lemmatization, and classification models. 
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1. Introduction 

Text classification can be characterized as a process of automatically assigning one or more 
of the pre-defined categories to a natural language document by inspecting and analyzing their 
inner contents, such as their terms and structural information. Sebastiani [1] describes the task 
as the activity of labeling natural language texts with thematic categories from a user-defined 
set. Much effort regarding text classification has been made in both academic and industrial 
circles due to its potential impact on other closely related areas, such as named entity 
recognition, document filtering, and word sense disambiguation. As such, many experimental 
text classification systems have been developed to show their relative advantages. However, 
few commercial or experimental classification systems are available for research, as in the 
case of information retrieval [1][2][3]. This situation makes it essential to develop a practical 
and efficient text classification system test bed where various extensions of existing 
approaches can be implemented and evaluated for their efficacy with minimal knowledge and 
experience in programming. 

This paper introduces DICE, a Domain-Independent text Classification Engine. DICE is 
robust, efficient, and domain-independent in terms of software and architecture. Each module 
of the system is clearly modularized and encapsulated for extensibility. The clear modular 
architecture allows for simple and continuous verification and facilitates changes in multiple 
cycles, even after its major development period is complete. 

The DICE can make system development processes clearer and more explicit. While 
parameter tunings are critical for achieving a high level of performance, especially with 
inductive learning modules for which parameters settings are of paramount importance (as in  
[1][4][5][6][7]), they are rarely mentioned explicitly in technical papers. In other words, it is 
neither clear nor explicit in past research how the systems were adapted and optimized for 
specific target domains. As a result, it is difficult to duplicate the same level of performance 
that may be necessary for comparisons in later research. This situation may indicate that their 
adaptation and optimization processes were not systematically done but were instead 
performed in an ad hoc manner. 

Another situation the proposed test bed attempts to address is related to the fact that 
experimental text classification systems are not full-fledged, as mentioned in several examples 
in the literature [1][2][3]. For example, a typical approach to build an experimental system is 
to separate the entire system into several modules including a feature generation module 
(responsible for tokenization, lemmatization, and feature importance estimations, for instance) 
and a classification module (for training and classifying). At first glance, this approach appears 
to be reasonable with respect to the modularity and encapsulation concepts in software 
engineering. As the generation steps for feature sets, training results and classification results 
are not pipelined naturally in the system; however, manual interventions are required. This 
problem can be circumvented with the DICE environment, in which a full-fledged system is 
readily available and can be extended for extensions.  

In order to ensure that the newly proposed system environment properly addresses the 
problems associated with past research prototypes in text classification, it is very important to 
provide a reasonable performance level of the system in terms of its overall effectiveness and 
efficiency. For maximum generality, such a system should not be biased toward or against a 
particular domain or task. To this end, an extensive series of experiments were conducted for 
four different domains.  
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This paper focuses on the ways to locate the optimal states of a practical text classification 
framework by using various adaptation methods provided by our system such as feature 
selection, lemmatization, classification models and so forth. By inspecting the experimental 
results of multiple datasets, we show that optimal configurations vary according to domains, 
which slightly differs from the previous results that concluded particular settings provided best 
performance without examining intensively in various test collections. 

2. Related Work 

2.1 Feature Selection 
It is clear that a large number of previous studies on feature selection for text categorization e
xist, and the case can be made that the present study is similar to those. Careful and objective i
nspection, however, can reveal the difference between the present approach and existing studi
es. For example, the pioneering work in this field by Yang and Pedersen provides the evaluati
on result of comparing five different feature selection methods based on LLSF and kNN [6]. T
he present work can be distinguished from it in several ways. The first is that DICE provides a
ll-in-one capabilities related to text categorization tasks; that is, it is no more than a commerci
alized system. Moreover, it is based on both naïve Bayesian and kNN models, which are cons
idered the most promising models in terms of both efficiency and effectiveness. More import
antly, their work appears to have focused on the decrease in the number of features (terms) du
e to the application of feature selection methods that maintain a similar level of effectiveness. 

Forman G. [4] parallels the present work in many respects regarding the evaluation and 
inspection of feature selection mechanisms. In this model, the author showed the valuable 
results of conducting an empirical study of twelve feature selection methods via experiments 
on a large-scale, artificially generated test collection, which he termed a ”benchmark,” 
originating from the four well-known datasets. In spite of the far-reaching execution of his 
work, it is less likely that the results can be well interpreted and understood by those who want 
them to be used readily in further research. There may be two reasons for that. The first is that 
the target classification model of Forman G. [4] is a binary class decision model, whereas all 
conventional test collections assume a multi-class model. Another reason, which may be 
related to the first, is associated with the fact that he artificially created a new benchmark 
collection based on four conventional test collections (TREC, OHSUMED, Reuters, and 
WebACE). This experimental approach is differs greatly compared to general approaches in 
which the performance is computed independently by each dataset of the existing test 
collection. In contrast, the present study focuses on providing the explicit performance of each 
environmental setting of DICE one dataset at a time for a better understanding of the results. 
More importantly, the proposed architecture, which is capable of supporting multiple 
classification models, enables us to both compare the performance readily and accordingly 
conduct model tuning in a certain domain.  

This experimental approach can be differentiated from Forman G. [4] in that the aim is to 
analyze the validity and universality of DICE through the concentrated behavioral inspections 
in certain domains, whereas Forman G. [4] gives general information only about the 
effectiveness of SVM without fully providing the inner settings of the classifier using datasets 
with greater variation. 

In addition, a considerable number of studies have been performed by many researchers 
who sought to reveal the link between text classification models and feature selection methods 
[4][6][7][8][9][10][11][12][13][14][15][16]. Recently, many studies have been published 
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related to the invention of new feature selection methods based on existing feature evaluation 
models which seeks to enhance the performance of text classification [20][21][21][22] 
[23][24][25][26][27][28][29]. In particular, nearly all of these aforementioned approaches in 
are dependent upon the statistical characteristics of each target domain. Strictly speaking, they 
usually utilize the frequency information of the constituent terms of the entire dataset. The 
Term Information Storage Structure (TISS) of DICE is highly flexible; it is expressive enough 
to accommodate all the necessary information for estimating those feature selection models, 
which implies that new feature selection functions can be easily appended as the occasion 
demands. Further research by the authors, therefore, will include the embodiment of these 
various feature selection methods and the invention of novel methods of feature selection. 

2.2 Implementation 
The work of Lewis et al. [3] can be considered as an example of an early article on the subj

ect of implementing practical text classification systems. In this paper, the authors introduced 
ATTICS, an extensible text classification system implemented in C++. However, experiment
al results are not included. Moreover, they did not present the detailed architecture of ATTICS, 
which would be a key issue in their paper. 

More recently, Aris et al. [30] showed that text classification tasks can be achieved by only 
conventional search engine functionals. One of the pivotal issues of their approach was to 
minimize the number of query terms coming from an input document, as the category 
assignment process should be realized by existing information retrieval operations. In the 
experimental results, however, a lack of clarity is apparent with respect to describing the actual 
performance values associated with this approach. First, they mainly used the  “area under the 
curve (AUC) score” and the ”cost estimation ratio” based on a ROC graph, which are not 
frequently used in current research. For instance, one of the figures in this paper that compares 
evaluation results based on both the AUC and F-measure shows that there is a striking contrast 
between the two measures (e.g., the values of the F-measure are very low compared to those of 
the AUC). Furthermore, as in a related study [3], the authors did not introduce the inner details 
of the data structures and the overall architecture of their system, which was also important 
given that they asserted the benefits of the search engine structure for classifying texts. 

3. Overall Architecture and Data Structure  
Fig. 1 shows the conceptual architecture of DICE as implemented in this paper. The system 
can contain manifold classification models, which are KNN and naïve Bayesian in this paper. 
In order to facilitate the preprocessing and training processes, document management module 
exists in the system. Also, classifier optimizer is used to adapt the system into a specific 
domain by means of its validation functions, configuration subsystem and other relevant 
utilities. Finally, DICE can also utilize domain specific language resources to maximize the 
performance in that domain. Instead of developing various different domain-dependent 
classifiers which might be restricted only to particular target domains, a general-purpose text 
classification framework was implemented so that it can be applied to any problem domain 
related to document classification. In this respect, the salient characteristics of the system are 
that it contains more than one document classification algorithm and that the feature 
generation module is separated from the algorithms. This approach can be justified by the fact 
that numerous document classification models share a similar feature structure and 
information. (e.g., a vector space model based on term frequencies, a conditional probability 
list of terms with respect to each class) 
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Fig. 1. Overall Architecture of DICE 

For a fast classification process, the inverted file structure as widely used in information 
retrieval systems is adopted here. Unlike conventional inverted file structures, however, this 
architecture is adequately optimized to text classification tasks; it includes a memory-based 
binary tree structure for the retrieval of massive terms and an efficient structure for saving and 
searching for class information.

3.1 Feature Storage Structures 
Once each document has been analyzed (e.g., tokenization, lemmatization, and POS tagging), 
a stream of terms in each document is generated. Fig. 2 shows the proposed storage structure 
for saving term information (TISS: Term Information Storage Structure). It exploits the general 
architecture and process of the inverted index structure used in IR. However, the concept is 
expanded so as to allow TISS to handle additional information related to classification tasks, 
including class identifiers, class frequencies, and class conditional probabilities, for which 
P(w | c), where w is a term and c is a category.  
As almost all of the classification tasks assume in-memory processing, implying that every 
analysis process is executed in main memory, a binary tree structure was adapted for saving 
and searching for each term in all target data rather than the B-tree or other locations. In the 
posting information part of each term, TISS maintains three types of information. These are the 
total term frequency; the general posting information, which is the mapping information 
between a term and document; and the conditional probability information in terms of each 
target class. 
The total term frequency is the number of all occurrences of a term in the target collection. It 
will be used when calculating the probability of a term in both the learning process and the 
feature selection process. Posting information contains not only every document identifier in 
which a term appears but additional information such as the class identifier of each document, 
the term frequency and the term weight. This posting information is clearly related to 
similarity-based classification algorithms such as k-Nearest Neighbors and others. Finally, the 
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conditional probability information includes exactly C nodes if the number of target classes is 
C. Each node contains statistics concerning the class and term distribution, P(w | c). Fig. 3 
denotes the additional information that is necessary to estimate the probabilities of all classes. 
While the upper part of Fig. 3 relates to saving the number of documents belonging to each 
class, the lower part shows the storage structure for saving the total term frequency of each 
class. 

 

 
Fig. 2. Term Information Storage Structure 

 

Fig. 3. Class Identifier vs. Total Term/Document Frequency Information Table Structure 
 
Given the refined feature information after the learning process, the next step is to serialize 

or write the information into several files for later use. The feature information consists of 
three separate files, each of which plays an important role in the classification process. The 
first file is the set of the entire posting information of each term, as referred to earlier. The 
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second file is a set of conditional probabilities of each term given the class, which can be used 
by a naïve Bayesian classifier. The last file contains the class probabilities. Users should 
specify the names of all three files in the configuration file. 

On the other hand, in order to classify new documents based on the learned features, all 
feature information should be loaded into the main memory. Once the information is loaded, 
classification engines can use it repeatedly, which may be why this classification process 
should be configured as a server (daemon). As the loading process is quite time-consuming 
owing to the size of the feature information, this configuration will be beneficial when 
working with on-demand classification functionalities. While the term information storage 
structure in the learning process is quite complicated, in the classification (execution) process, 
the proposed system uses a very simplified structure to maintain the feature information. Fig. 4 
shows the structure of the term information in the classification phase. All of the information is 
identical to that in TISS. Based on the structure, the classification engines can obtain all 
information regarding the classification of the target documents. 

 

 
Fig. 4. Simplified Term Information Storage Structure for Classification (Execution)

3.2 Classification Models 
The proposed system now supports the two well-known classification settings that are highly 
efficient and promising: naïve Bayesian and k-nearest neighbor. If a function f(·) is defined as a 
text classifier which returns a relevant class given an input document, the naïve Bayesian 
classifier, which is the first algorithm, is 
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where a document d is composed of and also can be represented by a set of terms xj, with 
multiple target classes ci. In order to estimate the conditional probability of a term given a class, 
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In this case, V is a set of all of the terms in the entire collection, and tfij is the term frequency of 
the term ti in the document dj. 
 

 
Fig. 5. Document Vector Similarity Calculation based on a Retrieval Process 

The second classification algorithm is the k-nearest neighbor algorithm, which is similar to 
the normal retrieval process based on the vector space model. A newly appearing document 
will be classified using the class information of the most similar documents as previously 
loaded in the document vector space. Based on the most similar k documents, the majority 
vote method, which favors the most frequent class in the nearest neighbors, was used.  
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In this equation, d is a newly appearing document, ci is a specific class and SimilarityRank (di, 
d) returns the ranking information based on the similarity between the two documents (di, d). 
The proposed system provides two similarity measurement approaches. With the assumption 
of the vector space model, a document d can be expressed as the vector (w1,…, wk), where wi is 
the term weight value of the term ti in the document and k is the number of terms in the entire 
collection. 

Fig. 5 depicts the simplified procedure for calculating the similarity between two 
documents using the retrieval process based on the vector space model, which is a very 
common and natural model in this domain. The focus here is not on the model itself but on the 
comprehensiveness and refinement of the framework. In general, it is not straightforward to 
develop a complete classification system that has multiple underpinning models. Moreover, 
literature regarding the implementation of classifiers based on retrieval models continues to be 
rare. 
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Simcos is the cosine value of the angle between d1 and d2, while Simdst is the Euclidian 
distance between two document vectors. Users may select one of the two similarity methods 
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according to their target domains. 

4. User Configuration System  
One of the strengths of DICE is its customization ability. Using the elaborate configuration 
function of DICE, a user can minutely control the entire system so as to ensure its highest level 
of performance in a certain domain. Table 1 shows the details of each configuration item of the 
system. There is no graphical user interface, although such an interface will be implemented 
eventually, that enables us to specify these configuration items more conveniently. Among the 
elements, the pivotal elements are TCL_METHOD, where the preferred classification model 
is specified, and TCL_FS_METHOD, where the chosen feature selection method is written 
out of five methods. 

Table 1. The Configuration Elements of DICE 

Configuration Items Explanations
LEMMA_DIC_DIR Directory of dictionaries that are required to lemmatize

LEMMA_AS_TERM Whether a lemma is extracted as an index or not
STOP_WORDS Whether stopwords will be used or not

STOP_WORD_FILE File name containing the stopwords
TARGET_CLASSES All of the categories in the current domain
TRAIN_DATA_DIR Directory containing the training set

TEST_DATA_DIR Directory containing the test set
CM_FILE_NAME Confusion Matrix (Contingency Table) File Name

TCL_METHOD Classification Model (kNN or naïve Bayesian)
TCL_CP_FILE List of all Conditional Probabilities (P(w | c)) of terms

TCL_TW_FILE List of all Posting Information (in IR) containing Term Weights
TCL_CI_FILE List of all Classes and their Probabilities (P(c))
TCL_KNN_K The number of neighborhoods checked by kNN model

TCL_KNN_SIM Similarity Measure (COS, DST) used in kNN model
TOTAL_TF_THRESH Collection Frequency Threshold of terms

TCL_FS_METHOD Feature Selection Method (NN, DF, IG, MI, CS)
TCL_FS_THRESH Threshold for each Feature Selection Method

CPB Whether Conditional Probability Boosting Method is used or not

5. Experiments and Discussion 
The experiment has two goals. First, it intends to demonstrate the location of the optimal 
settings of each collection using DICE’s flexible architecture; this can be achieved by the 
repetitive parameter alteration of the system. Secondly, though this intensive experiment, this 
paper presents the scalability and applicability of the system as it easily handles very large 
collections such as those at WebKB. 

5.1 Datasets 
In this paper, to evaluate the proposed DICE system, a series of intensive experiments were 
performed using the four distinct test collections consisting of Reuters-215781, 20 newsgroup2, 
                                                      
1 http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
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four corpuses from four universities from the WebKB project3 and blog postings with their 
emotional status (mood) attached4. By adapting various feature selection methods and altering 
the language processing approaches, the variations in the effectiveness and efficiency of DICE 
were investigated. Table 2 gives a summary of the four target collections used in this paper.  

Table 2. Experimental Datasets 

 Reuters-21578 20 Newsgroups WebKB Mood Corpus 
Subset ModApte Total Total Total 

# classes 10 20 7 4 
Total size 5.8 Mbytes 35.7 Mbytes 42.4 Mbytes 6.6 Mbytes 

# documents 7,522 18,846 8,281 7,003 
# training docs 6,022 15,077 6,624 5,604 

# testing docs 1,502 3,769 1,657 1,399 
# original features 5,859 (7,164) 27,409 (32,533) 20,391 (23,377) 6,178 (7,549) 
 

Table 3 shows the distributed (skewed) status of each document set with respect to the 
categories it contains. In particular, the variation in the number of documents of each class is 
very high in Reuter-21578 and WebKB, which might influence the final performance of the 
classification system. 

Table 3. Document Distribution with respect to Classes 

Dataset # of documents per class (sorted by number) 

Reuters-21578 gold(99), coffee(114), sugar(135), ship(156), interest(211), money-fx(259), trade(333), 
crude(355), acq(2125), earn(3735) 

20 Newsgroups talk.religion.misc(628), talk.politics.misc(775), alt.atheism(799), talk.politics.guns(910), 
talk.politics.mideast(940), comp.sys.mac.hardware(963), comp.graphics(973), 
misc.forsale(975), comp.sys.ibm.pc.hardwarre(982), sci.electronics(984), 
comp.os.ms-windows,misc(985), sci.space(987), comp.windows.x(988), rec.autos(990), 
sci.med(990), sci.crypt(991), rec.sport.baseball(994), rec.motorcycles(996), 
soc.religion.christian(997), rec.sport.hockey(999) 

WebKB staff(137), department(181), project(504), course(930), faculty(1124), student(1641), 
other(3764) 

Mood Corpus fear(1011), sad(1031), angry(1136), happy(3825) 

5.2 Experimental Settings 
Table 4 describes the eight types of the experimental settings apart from the case in which the 
k nearest neighbor model is used. Therefore, a total of 32 experimental settings exist in this 
paper, although all are not considered here in the interest of brevity. 

5.3 Effectiveness 
DICE support the three evaluation methods of the micro-averaged F1 measure [4][32] the 
macro-averaged F1 measure [32] and the traditional precision/recall method. During the 
optimization and adjustment of certain domains, any evaluation method can be used and, more 
importantly, compared any other at any time. This paper focuses mainly on the effectiveness in 

                                                                                                                                                      
2 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

4 This dataset was created by IR.NLP Lab. ICU, and is not yet published. 

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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terms of the micro-averaged F1 measure. All of the experimental results include both the 
lemmatization effect (the usage of DELEMMA) and the influence of the feature selection 
methods (DF, IG, CS, and MI). Particularly, the number of features was not fixed in advance 
using the feature selection methods as in most other studies. To observe the detailed variation 
of the performance, the threshold values were changed directly in this experiment. Hence, the 
resulting graphs appear to be somewhat complicated and uneven with respect to the changes in 
the number of features. Given these graphs, however, the behavior of the entire system can be 
inspected and analyzed more precisely. 

Table 4. Experimental Settings (in only the naïve Bayesian mode) 

Settings Model5 Feature Selection Lemmatization6

DF.nolem.NB naïve Bayesian Document Frequency No 
IG.nolem.NB naïve Bayesian Information Gain No 
MI.nolem.NB naïve Bayesian Mutual Information No 
CS.nolem.NB naïve Bayesian X2 Statistics No 

DF.lem.NB naïve Bayesian Document Frequency Yes 
IG.lem.NB naïve Bayesian Information Gain Yes 
MI.lem.NB naïve Bayesian Mutual Information Yes 
CS.lem.NB naïve Bayesian X2 Statistics Yes 

 

 
Fig. 6. Micro-average F1 values of the naïve Bayesian classifier (Reuter-21578) 

 
Fig. 6 shows the performance of the six settings of the naïve Bayesian classification of 

Reuter-21578. Each element in the legend in this figure indicates both the feature selection 

                                                      
5 This indicates the classification model used in each setting. In the interest of brevity, we have omitted the settings 
related to the k nearest neighbor model. 
6 Whether lemmatization is applied or not 
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method that was used and whether or not it involved lemmatization. Given this figure, 
MI.lem.NB showed slightly better performance. Moreover, regardless of whether or not 
lemmatization occurred, it is clear that with fewer features, applying mutual information as the 
feature selection criteria generally works well, whereas the information gain shows better 
performance with larger features. In the range of the feature numbers between 2,000 and 4,000, 
DELEMMA had a beneficial effect on the performance. This can be explained by the fact that 
the lemmatization process helps to select the favorable features by adjusting the four feature 
selection methods. 

 

 
Fig. 7. Comparison in μF1 and mF1 between five-fold cross validation ("KCV") and held-out 

evaluation ("HO") using Reuter-21578 
 

Table 5 denotes the 10 settings that showing the best performance in terms of 
micro-averaged F1 values. The values in the parentheses indicate the thresholds that were 
applied in each feature selection method. Here, MI.lem.NB shows the best performance while 
using fewer features compared to other settings in the table. Moreover, in general, regardless 
of whether lemmatization applied, mutual information (MI) appears to be the best feature 
selection method in the Reuter-21578 collection in terms of both the number of features and its 
average performance. 

In order to confirm the reliability of the performance of the best settings presented in Table 
5, another experiment was run using five-fold cross validation over the top ranked 50 settings. 
The final performance was computed by averaging the micro-averaged F1 values of all five 
trials. Fig. 7 summarizes the results of the experiments. It is clear from the figure that the rank 
given in Table 5 should be altered when the cross validation method is used. Moreover, 
although this requires further investigation, the number of features each setting generates and 
uses is likely to have an impact on the degree of the difference in performance between the two 
evaluation methods. For example, the numbers of features for the 1st, 2nd, 4th, 5th settings are 
relatively small. In these settings, the micro-averaged F1 values are also smaller than in the 
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other settings, which cannot be sufficiently explained by the fact that a higher number of 
features leads to better performance. Further research will include theoretical and empirical 
approaches to these phenomena. 

Table 5. Performance of Top 10 Settings  
on Reuter-21578 (naïve Bayesian) 

Table 6. Performance of Top 10 Settings  
on Reuter-21578 (kNN) 

R Settings # feat. μF1a mF1b R Settings # feat. μF1 mF1 
1 MI.lem.NB(0.22) 4,143 0.9640 0.8978 1 DF.nolem.KNN(28) 1,534 0.9427 0.8476 
1 MI.lem.NB(0.20) 4,282 0.9640 0.8950 2 DF.nolem.KNN(29) 1,477 0.9414 0.8466 
1 IG.nolem.NB(0.52) 6,081 0.9640 0.8944 2 DF.nolem.KNN(27) 1,589 0.9407 0.8462 
4 MI.nolem.NB(0.38) 3,630 0.9633 0.8943 4 DF.nolem.KNN(25) 1,693 0.9400 0.8480 
4 MI.nolem.NB(0.34) 3,923 0.9633 0.8942 5 DF.nolem.KNN(34) 1,298 0.9400 0.8515 
4 CS.nolem.NB(0.50) 6,900 0.9633 0.8936 5 DF.nolem.KNN(32) 1,369 0.9400 0.8478 
4 CS.nolem.NB(0.40) 7,028 0.9633 0.8928 5 DF.nolem.KNN(31) 1,395 0.9400 0.8466 
4 IG.nolem.NB(0.54) 5,975 0.9633 0.8928 5 DF.nolem.KNN(30) 1,435 0.9400 0.8462 
4 IG.nolem.NB(0.56) 5,832 0.9633 0.8928 5 DF.nolem.KNN(26) 1,635 0.9400 0.8414 
4 IG.nolem.NB(0.58) 5,646 0.9633 0.8928 10 DF.lem.KNN(74) 614 0.9394 0.8457 

 

 
Fig. 8. Micro-averaged F1 values of the kNN classifier (k=9) (Reuter-21578) 

 
Fig. 8 depicts the results of DICE’s kNN classification on Reuter-21578. Over the past 

decade, a considerable number of studies have been conduced regarding the impacts of feature 
selection methods on the kNN classifiers, as described in the beginning of this paper. This may 
explain why the minor details for the moment are relatively less important. However, it is 
important to emphasize in this figure that DF is the best feature selection method in the kNN 
classification of DICE, which is a completely different result from the  naïve Bayesian result. 
This result is somewhat surprising, as many studies have reported that IG or MI is more 
effective than others in the case of the kNN classification. 

As in the naïve Bayesian classification, Table 6 lists the top 10 settings with respect to the 
micro-averaged F1 among all settings of the kNN classification of DICE. As shown in Fig. 8, 
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if lemmatization is used, the number of features is greatly reduced while a competitive 
performance level if retained. For example, the 10th setting, DF.lem.KNN (74), has only 614 
features out of a total of 5,859, whereas its micro-averaged and macro-averaged F1 values are 
nearly identical to the top-ranked setting. Due to space limitations, the full version of this 
ranked result is omitted. In this investigation, however, out of the best 30 settings, 16 settings 
use lemmatization, at an average of 693 features each. 

Fig. 9 shows the performance of the naïve Bayesian classification of DICE on the 
20-newsgroup collection. This figure shows two important points: (1) The DF.lem.NB setting 
gives the most effective results, especially with a smaller number of features; (2) both 
CS.lem.NB and CS.nolem.NB show the best performance with a relatively large number of 
features. In particular, the benefits of lemmatization are demonstrated in this domain. As 
shown in the previous experiment, naïve Bayesian on Reuter-21578, lemmatization was 
unable to improve upon the performance level. In the 20-newsgroup domain, however, it 
helped raise the overall performance regardless of the feature selection method used. Although 
this cannot be proved systematically and theoretically, it is likely that if a domain has a 
sufficiently large number of features, lemmatization can improve the feature selection 
methods as they evaluate and choose the beneficial features from the entire set. 

 

 
Fig. 9. Micro-averaged F1 values of the naïve Bayesian classifier (20 newsgroups) 

 
More importantly, there are only very small performance gains using feature selection 

methods in this domain. As shown in Table 7, almost all of the best settings without 
lemmatization generate and utilize sets of features that are nearly equal in numbers. When 
lemmatization is applied, specifically the CS.lem.NB and IG.lem.NB settings, the features for 
these settings are reduced in number by nearly 5,000 on average. In contrast, the performance 
remains nearly identical to when the settings do not involve lemmatization. It is important to 
note that in the bottom line of Table 7, a setting without any feature selection and 
lemmatization is given which shows nearly the same micro-averaged F1 value as the others. 

Fig. 10 shows somewhat unexpected results when executing the five-fold cross validation 
on the best fifty settings which have the largest value given of μF1 based on the held-out 
evaluation (80% for training, 20% for testing). Far from being similar to the previous case 
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(Reuters-21578), what the figure indicates is in stark contrast to conventional knowledge 
regarding k-fold cross validation. Each μF1 (mF1) value of the five-fold cross validation is 
larger than its corresponding value in the held-out evaluation. In order to reveal the cause of 
this result, the resulting data including all the subsets’ performance values generated during 
the five-fold cross validation were closely examined. It was found that DICE, taken altogether, 
gives poor performance values, particularly with the subset chosen as the test set in the 
held-out evaluation. Except for this subset, all of the other values were better classified by 
DICE, showing nearly equivalent or larger μF1 values compared to the averaged five-fold 
cross validation results. As a result, the task of choosing one subset was not as reliable in the 
held-out evaluation. In any event, Fig. 10 shows the implications of confident evaluations of 
text classification systems. 

Table 7. Performance of Top 10 Settings on 20 
newsgroup (naïve Bayesian) 

Table 8. Performance of Top 10 Settings on 
WebKB (naïve Bayesian) 

Rank Settings # feat. μF1 mF1 Rank Settings # feat. μF1 
1 CS.nolem.NB(0.80) 32,446 0.8699 0.8631 1 IG.nolem.NB(0.74) 9,357 0.656401 
2 CS.lem.NB(0.80) 27,336 0.8697 0.8621 2 DF.nolem.NB(9) 10,642 0.653382 
2 IG.nolem.NB(0.52) 32,516 0.8697 0.8629 2 IG.nolem.NB(0.58) 15,401 0.653382 
2 IG.nolem.NB(0.54) 32,432 0.8697 0.8629 4 DF.nolem.NB(11) 9,198 0.652778 
2 IG.nolem.NB(0.56) 32,246 0.8697 0.8629 4 DF.nolem.NB(12) 8,637 0.652778 
2 IG.nolem.NB(0.58) 31,938 0.8697 0.8629 4 DF.nolem.NB(13) 8,138 0.652778 
2 IG.nolem.NB(0.60) 31,552 0.8697 0.8629 4 MI.nolem.NB(0.18) 15,512 0.652778 
2 IG.nolem.NB(0.62) 31,216 0.8697 0.8629 4 MI.nolem.NB(0.2) 14,552 0.652778 
2 IG.nolem.NB(0.64) 30,889 0.8697 0.8629 9 DF.nolem.NB(8) 11,584 0.652174 
2 IG.nolem.NB(0.66) 30,525 0.8697 0.8629 9 DF.nolem.NB(10) 9,826 0.652174 

 

 
Fig. 10. Comparison in μF1 and mF1 between the six-fold cross validation ("KCV") and the held-out 

evaluation ("HO") (20 newsgroup) 
 

The third test collection was WebKB, which is composed of a large number of HTML 
documents. This dataset was selected to investigate the filtering ability of DICE. In contrast to 
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the other datasets used in this paper, it is clear that each document in this collection includes 
many meaningless tokens, specifically HTML tags. The entire dataset was used deliberately; 
by leaving in these HTML tags and unimportant tokens, the potential performance of DICE 
can be determined. To investigate the impact of its capabilities on unclean or messy datasets 
fully, an experiment should be performed using a clarified version of WebKB with a 
comparison between the two drawn afterward. This will be carried out in a future study. 

Initially, it was expected that the feature selection methods provided by DICE would have a 
great impact on the overall performance in the domain of WebKB. However, Fig. 11 indicates 
that there was no significant difference whether or not the feature selection methods were 
applied. Nevertheless, one important aspect of this finding is that DICE showed that it could 
reduce the number of features to approximately 10% of the entire feature set, specifically to 
approximately 23,000 using the two settings (DF.lem.NB and DF.nolem.NB) without a great 
hit on its performance. Moreover, although IG.nolem.NB shows the highest μF1 value while 
using nearly 10,000 features in this domain, its performance decreases abruptly when the 
number of features falls below 10,000. Therefore, it follows that DF is likely to be the most 
reliable and competitive feature selection method in the WebKB domain when the naïve 
Bayesian model is used as the classification model. 

 

 
Fig. 11. Micro-averaged F1 values of  the naïve Bayesian classifier on (WebKB) 

As in the previous two experiments, a set of the best settings is also given in the WebKB 
domain. Table 8 shows the 10 settings which had the highest micro-averaged F1 values. As 
the table indicates, except for the last setting, every setting did not involve lemmatization. 
Another distinguishing trait of the ranked list is that it includes all three feature selection 
methods (DF, IG, MI), which implies there is no prominent method for selecting useful 
features in this domain. In addition, the last setting of the list shows that lemmatization can be 
helpful in reducing the number of features while maintaining good performance. 

The last dataset used was Mood Corpus which is composed of nearly 7,000 Web blog 
postings. Each posting (document) includes one of a total of four classes expressing the mood 
or emotional status of the current content; specifically these are angry, sad, happy, and fear. Fig. 
12 shows the global performance of DICE in this domain in terms of both the various numbers 
of features and feature selection methods. The cases in which lemmatization was applied are 
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also included in the figure. This figure shows clearly that in this domain, MI (mutual 
information) is the best feature selection method. In addition, DF is also attractive, showing 
competitive performance. Related to this figure, Table 9 contains the settings when using only 
the MI feature selection. 

 

 
Fig. 122. Micro-averaged  F1 values of the naïve Bayesian classifier (Mood Corpus) 

Table 9. Performance of Top 15 Setting on Mood Corpus (Naïve Bayesian) 

Rank Settings # features *F1 mF1 
1 MI.nolem.NB (0.26) 2,927 0.886347 0.840944 
2 MI.nolem.NB (0.28) 2,288 0.884203 0.837813 
3 MI.lem.NB (0.26) 1,917 0.883488 0.846795 
4 MI.nolem.NB (0.3) 1,939 0.882059 0.838674 
5 MI.nolem.NB (0.24) 3,298 0.879914 0.832808 
6 MI.lem.NB (0.24) 2,278 0.87777 0.835196 
6 MI.nolem.NB (0.32) 1,677 0.87777 0.83788 
8 MI.nolem.NB (0.22) 3,565 0.877055 0.828827 
9 MI.nolem.NB (0.34) 1,479 0.87634 0.839834 

10 MI.lem.NB (0.28) 1,691 0.875625 0.837772 
 

In this section, a series of very intensive analyses was discussed regarding the accuracy of 
DICE on four different datasets while varying the parameters that specify both the four feature 
selection methods and the two classification models. One of the contributions of this 
experiment related to the effectiveness of a text classification framework is that a new 
experimental procedure revealing the parametric details of the proposed system was invented 
and executed. Moreover, the optimal parameters for a particular domain were suggested. 
Through this approach, aspects related to the effectiveness of the current version of DICE were 
disclosed. Thus far, there is no known in-depth experimental study in the domain of text 
classification outside of the present work. Additionally, this paper does not simply aim to 
highlight the innate superiority of the proposed system; instead, it attempts to exhaustively 
reveal its current pros and cons. 

5.4 Efficiency 
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In order to be used as a practical application, it is critical for DICE to show competitive speed 
in both training and classification. In this subsection, complete and detailed results of 
experiments related to the training and classification time are given. In actuality, measuring 
and comparing the speed of some applications is not trivial because it is completely dependent 
on the specifications of the hardware and operating system with which these types of 
experiments are executed. In this paper, a Linux server equipped by 4 GB of memory and four 
2.8 GHz Intel Zeon CPUs was used.  

Table 10. Summary of Training and Classification Time

Dataset Tr. Size 
(Mbytes) 

Training 
(sec.) 

Cl. Size 
(Mbytes)

Testing
(sec.) 

T-Speed(1) 
(docs/sec.) 

T-Speed(2) 
(Mbytes/sec.)

Reuter-21578 (NB) 4.404 5.238 0.965 0.878 1710.706 1.099

20 Newsgroup 26.704 39.073 6.481 5.149 731.987 1.292

WebKB 32.601 45.972 8.577 4.146 399.421 2.069

Mood Corpus 5.551 5.003 1.252 1.037 1349.083 1.207

Reuter-21578 (KNN) 4.404 4.378 0.965 24.007 62.565 0.040
 

Table 10 shows summary of the efficiency test, which includes the five-time average of the 
training and classification time of DICE, the number of documents that were classified in one 
second, and other information. Due to the variations in the size of one document in each 
dataset, document sizes are given based on the classification time as well so as to evaluate the 
system accurately and objectively. In the NB classifiers, except for the WebKB dataset, DICE 
can classify close to 1.1 Mbytes of text per second. As expected, WebKB contains many 
special characters denoting HTML tags. Therefore, the resulting size is exceedingly large. On 
the other hand, in spite of the reputation of KNN in relation to its efficiency, its speed is very 
slow compared to NB. Further research will include algorithmic and implementation 
evaluations of the two classification models. 
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Fig. 13. Classification Time (Naïve Bayesian, Concurrent Environment), Top: 20 Newsgroup (3,769), 

Bottom: WebKB (1,657) 

As shown in Fig. 13, the classification time is a somewhat susceptible to the size of the 
feature set,. Each caption in the sub-figure includes both the name of the target dataset and the 
number of the documents in it. Although some fluctuations and increments in the running time 
are shown in these graphs, as in the case of the training time, DICE can most likely be operated 
in the concurrent environment without any large penalty in speed.  

Finally, a figure is presented which compares the training and classification times of both 
the NB and KNN models. This is shown in Fig. 14. This figure is the final figure regarding the 
comparative experiment of the efficiency of the two models. To demonstrate the reliability of 
this test, the two large datasets of WebKB and the 20-newsgroup set were combined to generate 
the largest dataset used in this experiment. This figure shows that the classification time of 
KNN monotonically increases, whereas the running time of NB is nearly constant. From a 
practical viewpoint, NB is superior to KNN with respect to both effectiveness (shown in the 
previous section) and efficiency. Moreover, with these objective experimental results, it is 
clear that NB would be a more attractive selection for the development of a real-time text 
classification system. 

6. Conclusion 
This paper presents a domain-independent text classification framework (DICE). Although 
there is no newly created approach in this system, an open-source-based framework system 
was developed which enables many researchers to invent creative approaches to text 
classification. To allow the developed system to be easily analyzed and used, the architecture 
of DICE was clarified explicitly in that many conventional structures related to the 
management and retrieval of information concerning text classification were adapted and 
modified. Although the source code of the modules involved is not presented, the extendable 
algorithmic formation of attaching additional feature selection methods can facilitate active 
research regarding the impact of various approaches to selecting useful and important terms 
from the training documents. Those who want to make use of the system without any 
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modifications will be able to optimize it for a particular domain simply by adjusting the 
configuration file.  
 

 
Fig. 14. Training and Testing Speed w.r.t. the increase in the number of documents (IG.nolem.NB (0.58), 

DF.nolem.KNN (3)) 

This experimental approach can be considered unique in that the optimal points (a set of 
parameter values) are suggested for each dataset (domain), while other papers and researchers 
have presented only the abstracted results which came from a hidden procedure of optimizing 
their systems or approaches. There has been no known attempt to reveal the inner part of the 
text classification systems directly. Moreover, an in-depth analysis is given of an efficiency 
test on DICE in which its speed is demonstrated.  

There are a number of application frameworks or libraries of general purpose classification 
models open to the public. However, few of them focus on the text classification. They merely 
provide a classification function itself based on well-made feature spaces. DICE concentrates 
on text classification while providing many meaningful functions related to it. It is hoped that 
DICE will be released via the Internet so that many researchers can harness and improve it by 
adapting numerous creative theories and mechanisms. 
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