• KSII Transactions on Internet and Information Systems
    Monthly Online Journal (eISSN: 1976-7277)

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer


Abstract

Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.


Statistics

Show / Hide Statistics

Statistics (Cumulative Counts from December 1st, 2015)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article

[IEEE Style]
K. Choi, K. Yi, C. M. Kyung, "Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer," KSII Transactions on Internet and Information Systems, vol. 11, no. 10, pp. 5149-5167, 2017. DOI: 10.3837/tiis.2017.10.025.

[ACM Style]
Kang-Woo Choi, Kang Yi, and Chong Min Kyung. 2017. Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer. KSII Transactions on Internet and Information Systems, 11, 10, (2017), 5149-5167. DOI: 10.3837/tiis.2017.10.025.

[BibTeX Style]
@article{tiis:21589, title="Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer", author="Kang-Woo Choi and Kang Yi and Chong Min Kyung and ", journal="KSII Transactions on Internet and Information Systems", DOI={10.3837/tiis.2017.10.025}, volume={11}, number={10}, year="2017", month={October}, pages={5149-5167}}