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Abstract 
 

This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative 
sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the 
time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing 
with short-time Fourier transform and compressed sensing, shortening the time of perception 
and improving the speed of spectrum access or exit. Moreover, method B can take advantage 
of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable 
for wideband spectrum sensing. Simulation results show that method A significantly 
outperforms the single serial CUSUM detection for small SNRs, while method B is 
substantially better than the block detection based spectrum sensing in small probability of the 
false alarm. 
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1. Introduction 

With the huge demand for the smart phones and mobile devices, how to offload heavy 
traffics is a hot topics of fifth-generation (5G) mobile communications. In [1-2], it’s proposed 
that femtocell combined with cognitive radio is a promising technology in 5G, but limited 
frequency resources have been behind their tremendous demand. To solve this problem, 
cognitive radio (CR) which provides higher spectrum efficiency by using vacant spectrum for 
communication with the guaranty of primary users (PU) has emerged. Therefore, how to 
increase dynamic spectrum access becomes the core question. Quickest detection is a 
continuous change point detection approach[3-4], which could detect the under-utilized 
spectrum for cognitive users (CU). Some classical detection methods, such as energy detection, 
matched filter detection and cyclic feature detection, are always based on block[5], while the 
quickest detection performs statistics on each sample which could achieve an agile spectrum 
sensing. In [6-7], a quickest detection framework is first introduced to investigate the delay of 
detection algorithms for spectrum sensing. An improved quickest spectrum sensing method, 
named successive refinement test, is proposed in [8], while cyclostationary feature based on 
quickest spectrum sensing is deployed in [9]. Collaborative quickest detection detects a certain 
distribution change in an ad-hoc network, where local decisions are made at all nodes [10-11]. 
At present, the research mainly focuses on the integration of spectrum sensing method and the 
framework of the fastest detection[19-20]. However, little research has been done into the 
multi-channel wideband quickest spectrum sensing which is a directive and effective method 
for spectrum access.  

Based on the above discussion, this paper is to improve the efficiency of the licensed 
frequency band, and increase the opportunity spectrum access. We expanded two clues for 
wideband spectrum sensing. One, named method A, is the quickest spectrum sensing with the 
short-time Fourier transform (STFT). The STFT, which is used to distinguish different 
primary users, is simple to realize, powerful in resistance to noise, and suitable for the 
real-time processing of non-stationary signal. Method A realizes the multi-channel parallel 
sensing, which improves the efficiency of spectrum sensing. The other one, named method B, 
is the quickest spectrum sensing with STFT and compressed sensing (CS). The wideband 
spectrum includes several independent sub-bands licensed to given primary users. Usually, 
only a few primary users exist in the sub-bands, hence the wideband spectrum has the feature 
of sparsity. This kind of sparsity allows CS to be applied to wideband spectrum sensing with 
reduced sampling rate and increased spectrum access in time and frequency domain. 
Otherwise, traditional cumulative sum (CUSUM) test is employed in quickest spectrum 
sensing. 

The rest of this paper is organized as follows. Sect.2 introduces the system model.  Sect.3 
describes the two improved quickest spectrum sensing approaches, and derives the relevant 
mathematical formulas. In Sect.4, simulations are conducted to prove the validity and 
efficiency of the proposed approaches. Finally, some conclusions and prospects are provided. 

2. System Model 
The quickest detection method is a dynamic process. Secondary user must quickly detect when 
the primary user signal appears or disappears within the authorized frequency band[9]. For this 
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process, a more clear modeling approach can be used to express as follows. If the primary user 
is transmitting, the received signal at the cognitive user can be represented as: 

     1 : ( ) ( ) ( ).H y i s i u i= +                                             (1) 
If the spectrum licensed to the primary user is underutilized, the received signal can be 

represented as: 

0 : ( ) ( ).H y i u i=                                                  (2) 

where ( ) ~ (0, )s i PΝ ,  2( ) ~ (0, )u i σΝ , and i  stands for a time parameter.  
Based on this, two basic parameters for spectrum sensing can be defined: probability of 

detection which is the probability of determining the current state as 1H  under 1H ; 
probability of false alarm which is the probability of determining the current state as 1H  under 

0H . In order to protect the primary user, the probability of detection should be set large 
enough. And in order to increase the possibility of the access of the cognitive user, the 
probability of false alarm should be set sufficiently small. 

The standard normal distribution function is defined as: 
2
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where ε  is the threshold. Correspondingly, the probability of detection is: 
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where 
k

g  means the weight coefficient of each user. The best 
k
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where kh  is the coefficient of each channel.  
When the primary user appears at an unknown time τ , ( )y i  becomes: 

( ) 1,2,... 1,
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= −
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                                (7) 

Following [10-11], we use the average run length of the worst-case delay 1T  and average 
run length of false alarm 0T  as the performance evaluation criteria: 

1
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0
0 { },pT E t=                                                           (9) 

where sup means superiority, ess  means essential, and τ  is when the primary user appears, 
however t  is the time for secondary users to detect. -T t τ=  is defined as the detection delay, 
and 0T <  is the event of false alarm. And 1yτ  is the observation sequence before the primary 
user appears and 

1pE  indicates the conditional expectation under the assumption that the 
primary user appears at τ . [15]. 

Single-channel model can be extended to a broadband signal model. The received signal in 
the time domain can be expressed as: 

( ) ( ) ( ),kx i s i u i= +                                                     (10) 
where k  is in order to distinguish the different primary users. According to the observation 
sequence in time domain, it is difficult to detect the change points of different original users. 
Thus, a simple method is to distinguish the different primary users in the frequency domain. 

3. Quickest Spectrum Sensing Approaches Based on STFT and CS 

3.1 Method A 

3.1.1 Algorithm 
STFT is described as follows. For the time domain signal, windowing is performed to realize 
the localized time. On the other hand, Fourier transform realized the localized frequency for 
the windowed signal, which is limited to the assumption of the samples to be piecewise 
stationary. Fig. 1 shows the details of method A. With the STFT translation of window, an 
intuitional time-frequency spectrum is obtained and the one-dimensional time domain signal 

( )x i  will become a two-dimensional matrix ,m nX , in which m  is the time sampling-point and 
n  is the frequency sampling-point. From the two-dimensional matrix ,m nX ,  the primary users 
with different carrier frequencies can be distinguished obviously, however the accuracy 
between the time domain and the frequency domain need a trade-off restricted by the 
uncertainty principle. It is not much in evidence to implement for ,m nX , since the statistics of 
quickest detection algorithm are inter-compared with each other: 

, , ,Re[ ] Im[ ].m n m n m nX X X= +                                                   (11) 
Cumulative sum (CUSUM) algorithm, which is a well-known quickest detection method, 

then obtains the change-point. For the sampling-point ,m nX , the log-likelihood ratio at m∀  
and n∀  can be defined as: 

,1
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where 0nf  means the observation samples before the frequency band is occupied, the 
observation samples are from the Gaussian noise, the mean of l  has a negative drift at the 
same n , while after that, the observation samples 1nf  are from different primary users and 
Gaussian noise, the mean of l  has a positive drift at the same n : 
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where 0 1( )n nD f f  is the Kullback-Leibler divergence of 0nf  from 1nf , and 1 0( )n nD f f  is 
defined similarly. 

According to l , an intuitive algorithm has the change-point at each n : 

, , ,, ,1 1 1
= max{ } max ,

t k t
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s l l l
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− =∑ ∑ ∑                           (15) 

where t  is the detection time after windowing. We suppose that the final detection time is that  
t  multiplies by the window length. After k , ns  is the largest one among all the statistics, 
which can be simplified by the recursive expression: 

, 1, ,max( ,0),m n m n m ns s l−= +                                              (16) 
where 0, =0ns .  

,min{ }.n m nt m s γ= ≥                                                 (17) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. The process of method A 
 

3.1.2 Asymptotic Performance Analyses 
Assume that STFT adopts rectangular window, the length of the window is M , and the length 
of fast Fourier transformation (FFT) for the windowed signal is also M . 

Before STFT, the distribution sequences of the primary users satisfy: 
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( )~ (0, ), 1,2,3,... .k ks i P i NΝ =                                                (18) 
We can assume that the spectrum influence of the primary users with different carrier 

frequency would be negligible. Hence, after STFT, if the frequency band is only with the 
random noise, 

2
, ~ (0, ), 1,2,3,... , 1,2,3,.., .m n

NX M m n M
M

σΝ = =                      (19) 

On the other hand, if the frequency band is the primary user with the random 
noise, 

2
, ~ (0, ), 1,2,3,... , 1,2,3,.., .m n k

NX MP M m n M
M

σΝ + = =              (20) 

Then if there is only random noise , we have 2
, ~ (0, )m nX MσΝ . And if there is the primary 

user with the random noise, we have 2
, ~ (0, )m n kX MP MσΝ + , which can be used in 

Equation (12). 
The log-likelihood ratio can be represent as: 
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We can also have: 
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Therefore, following [15], the average run length of the worst-case delay 1nT  and average 
run length of false alarm 0nT  is approximated by 

1

1 0

,
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T
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0 .nT eγ≥                                                     (25) 
Some simple bounds on 1T  and 0T  can be derived: 
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We can compute the average run length of the worst-case delay according to given average 

run length of false alarm. 

3.2 Method B 
Method A improves the dynamic spectrum access, however needs a high Nyquist sampling 
rate under Shannon’s theorem. Naturally, if the sampling frequency could be reduced, the 
lower energy would be needed. CS shows clearly that signals can be almost accurately 
reconstructed from a limited number of measurements if they are sparse or compressible, 
possibly contaminated with noise [13]. Therefore, the CS process, including the sparse 
representation of matrix, the choice of observation matrix, and the reconstruction of signal, 
makes the sampling frequency reduce, which can be described in more detail below: 
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Firstly, if x  which we view as an 1I ×  column vector is compressible on a orthogonal basis 
Ψ , =x βΨ , where Ψ  is the 1I ×  matrix and β  is the 1I ×  column vector. β  is considered 
as the equivalent sparse representation of x . 

Secondly, the 1L×  dimensional observation sequence can be shown as: Ty xβ= Φ = ΦΨ , 
where ( )T⋅  denotes the matrix transpose and Φ  is a stationary L I×  matrix called observation 
matrix which is irrelevant of Ψ . And we set = TΓ ΦΨ . 

Finally, obtain the accurate or approximate solution of x , which is based on a strict 
mathematical optimization problem: 

2 0
min T Ty x xλ−ΦΨ + Ψ , where 

2
 and 

0
 is the 

2-norm and 0-norm, respectively. The 2-norm is the square root of the largest characteristic 
value of the product of the matirix A  end TA . And 0-norm is the number of nonzero elements 
in the matrix. 

Otherwise, restricted isometry property (RIP) indicates the sufficient and necessary 
condition that the determined solution exists [17]. If Φ  adopts a random Gaussian matrix, it 
would obey RIP with high probability [18]. 

The sparsity in the wideband spectrum is defined as: 
- ,

-
number of occupied sub bands

total number of sub bands
η =                                  (28) 

and the compression ratio is known as: 

.L
I

ζ =                                                                 (29) 

Generally, ζ η> . 
The orthogonal matching pursuit (OMP) algorithm, which is a greed iteration algorithm, 

reconstructs the compressed signal y . In each iteration, the selected column q  from Γ  
should be maximum related with the current redundancy vector r . Then obtain the 
approximate solution x̂  of current x  by this column and refine the redundancy vector. Until 
the iteration number satisfies predetermined requirements, iteration stops. The steps of OMP 
algorithm are described as follows: 

The initial definition: 0r y=  and iterations 1i = , incremental matrix A  and 0 =A  Ø ; 
Firstly, the selected column 1

1,2,...,
arg max ,i i j

j I
q r −

=
= < Γ > ; 

Then, refine 1[ , ]
ii i qA A −= Γ ; 

Thirdly, get the solution 1ˆ =<A ,A > (A )T
i i i ix y−  based on the least-square method; 

Finally, refine ˆi ir y x= − Γ  and 1i i= + . Until i  satisfies the condition, we have x̂  and 
iteration stops. 

The procedure of block detection is as follows: first,the received signal is divided into 
several small blocks by a fixed sampling length, and it is assumed that the signals in each 
block are kept in the same state. We will get two species of signal,  "there is primary user 
signal" and "no primary user signal " by this way. Then every small block is an unit, it 
calculates the statistics within the block and compares with a set threshold, then it gets the 
band of the idle situation. 

Fig. 2 shows the process of method B, and after CS which is supposed to be ideal 
reconstruction, STFT is used for x̂ . We can have the observation sequence at the cognitive 
user using Equation (11). The cognitive user obtains using Equation (12) after each sample, 



1206                  Zhao et al.: Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS 

computes s using Equation (16), compares the statistics at each frequency sampling point 
using Equation (18), and has the detection time in each frequency band. One focus is that CS 
will inevitably introduce error for spectrum sensing. It is unable to reach the near constant 
false alarm rate (CFAR) like CUSUM detection and method A. So, we employ a new system 
specification called the probability of false alarm which is of interest for spectrum sensing.  
Another performance indicator remains detection delay. Note that the threshold is the key to 
system performance, and it can be tuned using experimental results. 
    Both Method A and Method B improve the efficiency of wideband spectrum sensing from 
the perspective of detection approaches. Besides these, a collaborative video scheduling 
scheme is designed in [21]. And in [22],  a totally distributed content delivery system is 
proposed. These two ways are mainly for device-to-device communication. In [23], we can 
learn an exact expression for the stochastic fluid model and characterize the performance 
which improve the data service for the Industrial Internet of Things. 
 
 
 
 
 
 
 
 

                                                      
 
 

Fig. 2. The process of method B 
 

4. Simulations and Results 
In this section, we show the performance of wideband spectrum sensing, including method A 
and method B. We assume that 2 =1σ , there are five primary BPSK modulated signals. We set 
the length of the window to 20 sampling points, the motion of the window is not overlapping. 
Detection delay is the average delay of all detection methods, serial CUSUM detection or 
block based spectrum sensing. The detection time is the last time, when all the primary users 
complete the detection task. 

We first simulate the performance of method A. Fig. 3 shows the relationship between the 
detection delay and SNR under the same threshold. The detection delay is uniformly reduced 
as the SNR increases. The log-likelihood ratio deviates from zero farther for a large SNR, 
hence large statistics are output. Large statistics result in a small detection delay under the 
same threshold. For example, the detection delay decreases by about 90  percent when the 
SNR increases from 0.5  to 2.5 .  
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Fig. 3. Method A: detection delay versus P  

 
Fig. 4 compares the distribution of the detection delay of the various algorithms when we 

set the same 0T . When =50γ  for method A, the threshold is 53  for CUSUM detection. The 
detection delay of method A distributes centrally in some points, while the detection delay of 
CUSUM detection is almost discrete. When =2.5P , we observe that the largest percent of the 
detection delay is 0.4168  in method A, whereas that is 0.02714  in CUSUM detection. The 
distribution of the detection delay in method A is of an obvious advance than CUSUM 
detection under small P . For example, when =0.5P , the detection delay of greatest chance is 
659 in method A, while that is 1104 in CUSUM detection. For the average detection delay, 
method A is uniformly better than the CUSUM detection for small P , for example, about 
157.5 in method A and 180 in CUSUM detection when =1.5P . 
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Fig. 4. Distribution of the detection delay in method A and CUSUM detection 
 

Fig. 5 shows a comparison between method A and CUSUM detection at different 0log( )T  
when =0.5P . Parallel detection time is substantially better than serial detection time. An 
example is that the detection time is about 2780 for CUSUM detection and about 760 for 
method A when 10

0log( )=log(20e ) 13T ≈ . 
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Fig. 5. Detection Time versus 0log( )T  and Detection delay versus 0log( )T  in method A and 

CUSUM detection when =0.5P  
 

We then simulate the performance of method B. We set =0.4η , that is to say there are only 
two primary users in the wideband, and  =0.5ζ . Suppose that =0.5P , and the primary users 
start transmission at the 101th point and 301th point, respectively. 

From Fig. 6(a), method B is superior than block detection when the probability of false 
alarm is more than about 0.25 which also reflects the probability of false alarms for the fastest 
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detection. For example, the detection delay is around 90 for method B but around 100 for 
block detection when the probability of false alarm is 0.1. Otherwise, method B is quite suited 
to the situation that needs a small detection time as Fig. 6(b) describes. 
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(b) 

Fig. 6. Method B versus block detection based spectrum sensing 
 

Fig. 7 shows the comparison between method A, method B and block detection. Method B 
was performed under the condition that the sparse degree was 0.4 and the compression rate 
was 0.5. We can conclude that the detection delay of method A is the smallest and then that of 
method B. Method B is developed on the basis of A, and the main purpose is to reduce the high 
sampling rate when applied to wideband signals detection. Method B can take advantage of 
the sparsity of wideband signals, sampling in the sub-Nyquist rate for sparse representation 
and reconstruction of signals, and then performs quickest spectrum sensing of the 
reconstructed signals. The reconstructed signals will have SNR loss or signals distortion, so it 
can be predicted that the performance of method A is better than method B. However, both 
method A and B have better performance than block detection, and method B is more suitable 
for wideband spectrum sensing than method A. 
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Fig. 7. Comparison between method A, method B and block detection based spectrum sensing 

5. Summary 
To improve the efficiency of wideband spectrum sensing, two novel quickest detection 

approaches based on STFT and CS are proposed. Compared with signal-channel serial 
spectrum sensing, the parallel method could substantially improve the spectrum access 
opportunity. Our simulations give comprehensive performance evaluation including the 
considerations of the detection delay, the mean time to false alarms and the probability of false 
alarm. Simulation results validate of the algorithms. In the future, we will study improved 
algorithms about the cooperative wideband spectrum sensing. 
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