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Abstract 
 

Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data 
centers today. However, cloud data centers using TCP experience many issues as TCP was 
designed based on the assumption that it would primarily be used in Wide Area Networks 
(WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This 
issue arises because of the many-to-one communication pattern that commonly exists in the 
modern cloud data centers. In many-to-one communication pattern, multiple senders 
simultaneously send data to a single receiver. This causes packet loss at the switch buffer 
which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). 
Recently, Software-Defined Networking (SDN) has been used by many researchers to 
mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to 
the Incast issue is carried out. In this survey, various SDN based solutions are classified into 
four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based 
solutions, Quick Recovery based solutions and Application Layer based solutions. All the 
solutions are critically evaluated in terms of their principles, advantages, and shortcomings. 
Another important feature of this survey is to compare various SDN based solutions with 
respect to different performance metrics e.g. maximum number of concurrent senders 
supported, calculation of delay at the controller etc. These performance metrics are important 
for deployment of any SDN based solution in modern cloud data centers. In addition, future 
research directions are also discussed in this survey that can be explored to design and 
develop better SDN based solutions to the Incast issue. 
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1. Introduction 

Data centres form the backbone for cloud operators to provide their clients with access to 
cloud services that range from simple process like online storage to that of computationally 
sensitive services running on virtual machines. More and more individuals and enterprises 
are taking advantage of the different cloud service models (i.e. Infrastructure as a Service 
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)) that are available to 
them. The rapid growth in the usage of services provided by cloud computing has led to the 
creation of new data centres by cloud providers e.g. Amazon plans to establish a new data 
centre in Paris in 2017 [1]. Virtualization is the foundation on which cloud providers build 
their business. The hypervisor, also called Virtual Machine Monitor (VMM), is an integral 
component of virtualization that creates and runs Virtual Machines (VMs) [2]. In cloud data 
centers, the majority of flows tend to be short, whereas the majority of packets belong to a 
few long-lived large flows. The short flows known as mice are related to bursty, latency-
sensitive applications like search results.  The long-lived flows known as elephants are 
usually large transfers, such as backups or back-end operations [3]. For efficient 
communication, cloud data centers must employ data transfer techniques and protocols that 
are not only highly reliable but also capable of maintaining high throughput. The reliable 
Transmission Control Protocol (TCP) is the widely used transport protocol for data transfer 
within the cloud data centres [3][4][5][6]. 

TCP was designed based on the assumption that it would primarily be used in Wide Area 
Networks (WANs) and is therefore, not optimized to be used in a typical data centre 
environment that consists of limited-size switch buffers, low propagation delays and high-
speed links [3][4]. For example, the minimum Retransmission Timeout (RTO) timer of TCP 
is set to 200ms which is too large for a data centre environment that has very low Round 
Trip Times (RTTs) [4][5]. Another major issue with TCP is the fact that it does not take into 
account the extent of congestion and reduces congestion window to half or to 1 Maximum 
Segment Size (MSS) as a result of a packet loss [3][7]. These issues with TCP can severely 
impact the throughput that is needed to perform various tasks inside the cloud data centers. 
Consequetly, TCP suffers from many issues inside the cloud data centers. One of the major 
issues with TCP inside the cloud data centers that has been widely discussed in the literature 
is the Incast issue [3][4][5][6]. 

Incast issue arises because of the partition/aggregation workflow that is present in the 
cloud data centers. The aggregator divides the query and sends it to various worker nodes. 
After resolving the query, worker nodes send packets to the aggregator at the same time 
which results in a many-to-one communication pattern. The switch (with limited buffer 
capacity) present between the worker nodes and the aggregator is not able to store all the 
packets because of this many-to-one communication pattern and this results in packet loss at 
the switch. The aggregator now has to wait till TCP retransmits the loss packets. This results 
in TCP throughput collapse which increases the time required to complete the query 
[3][4][5][6][8]. Many techniques have been proposed in the literature to address the Incast 
problem. Some solutions to the Incast issue that have been used by many studies in the 
literature, as a benchmark, are Data Center TCP (DCTCP) [3], Incast Congestion Control 
TCP (ICTCP) [9], Deadline-Aware Data Center TCP (D2TCP) [10], Receiver Window 
Queue (RWNDQ) [11] etc. Recently, Software-Defined Networking (SDN) [12][13] based 
solutions to mitigate the Incast issue have also been discussed in the literature 
[6][14][15][16]. 

In this work, we carry out a detailed survey of various SDN based solutions proposed in 
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the current literature to mitigate the TCP Incast issue. We classify the various SDN based 
solutions into four categories i.e. TCP receive window based solutions, Tuning TCP 
parameters based solutions, Quick recovery based solutions and Application layer based 
solutions. We discuss principles, working details of all the four types of solutions and then 
crtically evaluate each of them by discussing their weaknesses. All SDN based solutions are 
evaluated for various performance metrics that are critical for deployment in the cloud data 
centers e.g. support of maximum number of concurrent senders, comparison with non-SDN 
solutions, calculation of delay at the controller etc.  Future research directions are also 
discussed that outline promising investigation areas. We note that few surveys [4][5] have 
been carried out in the existing literature regarding the TCP incast issue. However, these 
surveys [4][5] discuss only non-SDN based solutions for TCP Incast issue. To the best of 
author’s knowledge, there is no survey in the existing literature that classifies and critically 
evaluates various SDN based solutions to the Incast issue. 

The main contributions of this work are (i) To categorise various SDN based solutions 
proposed in the existing literature to mitigate the TCP Incast issue. (ii) To discuss working 
principles and details of various SDN based solutions proposed in the existing literature to 
mitigate the TCP Incast issue. (iii) To critically evaluate various categories of SDN based 
solutions proposed in the existing literature to mitigate the TCP Incast issue. (iv) To compare 
different SDN based solutions to mitigate Incast issue based on various perfromance metrics. 
(v) To propose future research directions that can be explored as a source of motivation 
towards development and deployment of new SDN based solutions for the TCP Incast issue. 

The rest of this survey is organized as follows. In section 2, TCP Incast issue and previous 
surveys carried out regarding TCP Incast issue are discussed. SDN is briefly discussed in 
section 3. In section 4, four types of SDN based solutions are discussed and critically 
evaluated. In section 5, comparison of various SDN based solutions in terms of different 
performance metrics is carried out and future research directions are proposed. Finally, 
conclusion of the survey is provided in section 6. 

2. Background and Related Work 

 The cloud data centers today consist of large number of traffic flows with different 
characteristics and requirements. The traffic inside the cloud data center includes short lived, 
delay sensitive mice flows (e.g. traffic from large scale web applications, distributed fie 
storage etc) and long lived, delay insensitive, bandwidth sensitive elephant flows (e.g. traffic 
from backups and VM migration etc) [3]. Mice flows are generated inside the cloud data 
centers because of applications that consist of many-to-one communication pattern e.g. large 
scale web applications, distributed fie storage (e.g. Hadoop Distributed File System (HDFS)), 
data procesing applications (e.g. MapReduce) [3][17][18]. In all these applications, the query 
is broken down into smaller queries by the aggregator and are sent to worker nodes. The 
worker nodes are connected to a shallow buffer switch (mostly 3-4 MB memory [19]) which 
is in turn connected to the aggregator. The aggregator receives all the replies from workers 
and then combines them into final result. However, sending of infromation by worker nodes 
to aggregator creates a synchronized many-to-one communication pattern that quickly fills 
up the buffer at the switch which also has traffic from elephant flows passing through it. This 
exhaustion of buffer at the switch causes packet loss [3][4][5]. Fast retranmission phase of 
TCP, that requires sending Tripple duplicate ACKs, also does not trigger due to lack of 
subsequent packets arriving at the sender. Consequently, TCP at the sender waits for the 
minimum RTO timer of TCP to expire before loss packets can be retransmitted. RTO timer 
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of TCP  is generally set to 200ms in most operating systems [3][19]. However, this value is 
suitable for WAN links but not for data centers where RTTs are in the order of microseconds 
[3][17][18]. This delay leads to underutilization of the network and throughput collapse 
(called as TCP Incast throughput collapse) which leads to long Flow Completion Time (FCT) 
for mice flows. The increase in FCT makes the mice flows to miss their deadlines and 
consequently are unacceptable to the aggregator. This results in bad response quality 
[3][4][5][9][20]. Studies [19][20][21] suggest that this delay caused by Incast issue can 
severely impact the revenue of the cloud operator e.g. every 100ms of latency cost Amazon 1% 
in sales [21], similarly, extra 0.5 seconds in search page generation time dropped the traffic 
of Google by 20% [21].  The incast scenario is shown in Fig. 1 [3][4][6]. 
 

 
Fig. 1. TCP Incast Scenario. 

 
Some studies [4][5][22][23][24][25] in the current literature have carried out a survey to 
classify and analyze various non-SDN based solutions to mitigate the Incast issue. In [4] 
authors categorized non-SDN based solutions from the aspect of different layers of the 
TCP/IP model i.e. solutions based on link layer, transport layer and application layer. 
However, authors in [4] do not provide any future research directions in this area. A survey 
on various issues regarding transport control in data center networks is carried out in [5]. 
Authors discussed the TCP Incast issue and provided a survey of various non-SDN based 
solutions to mitigate this issue. In [5], authors classified the non-SDN based solutions in 
three categories i.e. revising TCP parameters, replacing TCP with other protocols and 
solving Incast at other layers of the TCP/IP model. Authors briefly proposed and explained 
few future research directions in this area e.g. to design a lossless transport protocol to 
eliminate timeouts. Similarly, authors in [22][23] discussed and critically evaluated various 
non-SDN solutions (e.g. DCTCP etc.) to mitigate the Incast issue in cloud data centers. No 
future research directions are presented in [22], however, authors in [23] discussed future 
research directions and proposed the use of SDN in cloud data centers to mitigate the Incast 
issue. In [23], authors suggested that SDN can be used to tune different TCP parameters in 
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real-time with respect to the current network state and prevent buffers from queuing up too 
much data. However, no survey of SDN based solutions to mitigate the Incast issue is carried 
out in [23]. In [24], a survey on various issues related to network resource management in 
cloud data centers is carried out. Authors have also briefly explained various solutions to 
mitigate these issues. The use of SDN to mitigate the Incast issue in cloud data centers is 
presented in [24]. Authors explained that SDN controller can be used to dynamically update 
various TCP parameters (e.g. minimum RTO) and this can help in the mitigation of the 
Incast issue. A survey of existing transport layer solutions proposed for mitigating the TCP 
Incast issue is also carried out in [25]. In [25], various solutions to TCP Incast (e.g. DCTCP, 
ICTCP etc.) issue are critically evaluated using different criteria i.e. modifications to the 
TCP stack, support from the switch, congestion control algorithm etc. 
It is noted that no study exists in the current literature that has carried out a detailed survey 
of various SDN based solutions that have been proposed in the last few years to mitigate the 
Incast issue. This study aims to fill in this research gap by categorizing and critically 
evaluating various SDN based solutions. Another novelty of this work is to compare 
different SDN based solutions in terms of various performance metrics and propose future 
research directions. 

3. Software-Defined Networking (SDN) 
SDN is a new approach to computer networks that differs from traditional networking due to 
the fact that it separates the data and control planes [12][13]. Data plane deals with the logic 
and tables that help in the forwarding of incoming packets based on characteristics like IP 
address, Virtual Local Area Networks Identification (VLAN ID) etc. Control plane deals 
with the protocols, logic and algorithms that are used to program the data plane. In SDN, 
unlike traditional networks, the control plane is not present on the devices but is moved to a 
centralized controller. The  separation  of  the  control  plane  and  the  data  plane is   
realized  by  means  of  a  well-defined  programming interface  between  the  switches  and  
the  controller.  The controller  exercises  direct  control  over  the  state  in  the  data-plane 
elements (e.g. switches etc.) via this well-defined Application Programming Interface  (API).  
The most notable example of such an API is OpenFlow. An OpenFlow switch has one or 
more tables (called as flow table) of packet-handling rules. Each rule matches a subset of the 
traffic and performs certain actions (e.g. dropping, forwarding etc.) on the traffic. SDN  was  
developed  to  facilitate innovation  and  enable  simple  programmatic  control  of  the 
network data-path. The separation of the forwarding hardware from the control logic allows 
easier deployment of new protocols and applications, straightforward network visualization 
and management [12][13].  SDN based solutions to mitigate the Incast issue in cloud data 
centers are discussed in the next section. 

4. Existing SDN based Solutions  
SDN based solutions to mitigate Incast have attracted a lot of attention in the last few years 
because of the popularity and growth of infrastructure capable of supporting SDN in cloud 
data centers. In this section, working details of various SDN based solutions are provided. 
An important feature of our work is to critically evaluate these solutions and highlight the 
issues in them. We divide the various SDN based solutions discussed in the literature into 
four broad categories, which are: TCP receive window based solutions, Tuning TCP 
parameters based solutions, Quick recovery based solutions and Application layer based 
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solutions. This classification is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 

 
         Fig. 2. Classification of SDN based Solutions for Incast Issue 

 
4.1 TCP Receive Window Based Solutions 
 
The key idea of these solutions is to take advantage of the centralized architecture of SDN 
and use the controller and SDN switch to calculate new sending rate for the senders in the 
presence of congestion. This new sending rate is added to the receive window field of the 
TCP ACK header and is sent to the senders to throttle the sending rate. This adjustment in 
sending rate prevents switch buffers to overflow. The solutions in this category need either 
the SDN switch or some other entity e.g. the hypervisor to modify the TCP packet. These 
solutions are discussed below; 
 
4.1.1 Software-Define Network Based TCP (SDTCP) 
 
SDN based TCP (SDTCP) is presented in [6][26] to mitigate the TCP Incast issue. On 
detecting congestion, this mechanism reduces the sending rate of elephant flows so that mice 
flows can be accommodated and packet loss can be avoided. The congestion is detected 
when the queue length of the SDN switch is above the certain threshold and at this instance, 
the SDN switch sends a congestion notification message to the controller. This notification 
message depending on the congestion level at the switch can be of three types i.e. low 
congestion, medium congestion and high congestion. The controller has a flow selection 
module that has all the details of elephant flows and mice flows. The controller selects all the 
elephant flows and estimates their current bandwidth. It then reduces the sending rate of 
these elephant flows depending on the network congestion level as indicated by the SDN 
switch. For example, the sending rate (awnd) of elephant flows determined by the controller 
on receipt of medium level congestion notification from the switch is given as:   
 

       
 
Where G is the number of elephant flows and Wswnd is the capacity of bottleneck link that is 
equally shared by each flow. Wswnd is given as: 

max( ,1 ), ( )
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Where C is the capacity of bottleneck link, Q (t) is the queue length at time t and N is the 
number of elephant and mice flows. The controller then updates the flow table entries at the 
SDN switch and a new flow table entry called as advertised window (awnd) is added which 
represents the new calculated sending rate. When the TCP ACK packet arriving at the SDN 
switch matches the awnd entries, the awnd value of the ACK packet is updated with this new 
value. The awnd is determined by:  

 

                     
 

where awndr = value of awnd of TCP ACK packet arriving at the switch 
awndi = value of awnd in the flow table for the i-th elephant flow 

 

After receiving the modified ACK packet, the sender adjusts its sending window (swnd) 
based on the following equation 
 

       
 

where cwnd is the congestion window. Like in basic TCP, swnd is normally defined by cwnd. 
This means that SDTCP temporarily reduces the sending rate of all the elephant flows and in 
this way the queue at the switch is not filled up to cause packet loss for both elephant and 
mice flows. Authors in [6][26] carry out experiments to test SDTCP and compare it with 
TCP and DCTCP. Experiments are carried out by using many-to-one communication 
topology with a TCP RTO of 30ms. The experimental results show that SDTCP provides 
high throughput to mice flows and does not starve elephant flows. It also provides lower 
FCT than both TCP and DCTCP. Experimental results presented in [26] are based on 40 
senders and 40 receivers with 1Gbps throughput. Another work [27] compares SDTCP with 
TCP Reno [28] and TCP Cubic [29] in a smaller network of 10 senders and 10 receivers with 
lesser capacity of 250Mbps. Authors in [27] found that with smaller network size and lesser 
capacity, TCP Reno and TCP Cubic provide similar throughput performance as SDTCP. 
 

4.1.2 SDN based Incast Congestion Control via Queue-based Monitoring                         
 
The motivation behind the SDN based Incast Congestion Control via Queue-based 
Monitoring (SICCQ) as presented in [30][31] is to reduce the effect of Incast issue in data 
centers while simultaneously not effecting the throughput of elephant flows. Another 
motivation behind SICC is not to modify the basic TCP mechanism on sender/ receiver and 
the SDN switch. The controller in SICC keeps track of TCP SYN packets of all connections 
(source destination pair) and a weighted moving average of buffers occupancy at the SDN 
switch. The controller also keeps track of the new minimum number of extra bytes added by 
any new connection. If the new connection added can result in buffer overflow then it sends 
an Incast-on message to the hypervisor of the senders. However, if more space is available in 
the buffer (more than 20% of buffer size) it then sends an Incast-off message. The hypervisor 
keeps track of TCP ACK packets and if Incast-on flag is turned on, it then rewrites the 
receive window value in the ACK packets to 1MSS. On receiving Incast-off message, the 
controller turns off the Incast flag. The setting of receive window to 1MSS reduces the 

. ( )
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sending rate of all senders. This prevents packet loss and TCP retransmission timeouts for 
mice flows (especially at the start of connection when recovery due to packet loss is not 
possible because of unavailability of Three Duplicate ACKs), therefore, mitigating TCP 
Incast issue. Incast flag is turned off when buffer space is available and then all the flows 
restore their data rate by resuming their existing congestion window values. Simulations and 
experiments carried out in [30][31] show that SICCQ reduces the Incast by improving FCT 
of mice flows and at the same time its impact on throughput of elephant flows is minimal. 

The main contribution of SICCQ is that it does not modify the basic TCP mechanism and 
the SDN switches that are used in the data center today. However, it does require the 
hypervisor to be modified to rewrite the ACK packets and keep track of the Incast flag. 
Moreover, the results presented in [30][31], show that the performance of SICCQ is 
comparable to DCTCP but worse than RWNDQ. For example, for a single-rooted topology 
(with elephant to mice flow ratio of 1:3), SICCQ improves the completion time of mice 
flows on average; it has less variation in response times and its performance is similar to 
DCTCP. However, it does not perform better than RWNDQ.  
      
4.1.3 Scalable Congestion Control Protocol (SCCP) 
 
The main goal of SCCP [14] is to avoid packet loss via buffer flow even in the presence of 
large number of flows in the cloud data centers. SCCP keeps track of packets coming in and 
going out of each port of the SDN switch. For each packet leaving the port, it keeps track of 
the number of TCP flows (by detecting TCP SYN/FIN flags). For each packet entering the 
port, it computes the Fair-Share (FS)  and updates the value of the TCP receive window 
field in the header only if the new calculated value is less than the old value of receive 
window. FS is defined as the size of each flow that the switch port can support. FS is 
calculated by taking into account the Bandwidth Delay Product (BDP) of the port and the 
number of flows passing through the port. FS on ith switch port is given as:  
 

         
 

where Ni is the number of flows passing through the ith switch port. BDPi is given as: 
 

               
 

where value of CommonRTT is given as 300µs or 400µs [14]. The receive 
window value in TCP header is updated by each switch in the end-to-end path between the 
sender and the receiver. In this way, the sender comes to know about the FS of the bottleneck 
port and it can update the sending rate accordingly. The bottleneck port may change with 
traffic dynamically entering the network. The FS is updated accordingly and reported to the 
senders. This mitigates the Incast issue as packet loss due to the buffer overflow in the 
bottleneck port is avoided. SCCP has shown significant performance gains than both TCP 
New Reno and DCTCP. In a single root scenario, it achieve very low FCT (8.4ms) for mice 
flows even in the presence of 400 workers. In a multiple root scenario, where 90 workers are 
attached to each of the five roots, it again outperforms both TCP New Reno and DCTCP. 
Another advantage of SCCP is the fact that it does not maintain per flow information (which 
can cause significant overhead) but it just keeps record of number of flows (N) passing 
through each switch port. SCCP, however, does require the SDN switch to do extra 
processing by checking for the receive window value and then update it with new value, if 

i
i

i

BDPFS
N

=
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required.  
 
4.1.4 SED: An SDN based Explicit Deadline Aware TCP  
 
SED [19] divides the flows into two types i.e. deadline flows and non-deadline flows. Non-
deadline flows are given a base sending rate of 1MSS. However, spare bandwidth is given to 
as many deadline flows as possible. In SED, the SDN switch keeps track of its buffer and 
sends a congestion notification message to the controller if the buffer size is above a certain 
threshold. The controller creates a Global Information Flow Table (GIF). This table holds 
records of many flows like size and identification number of flow, deadline, remaining flow 
size etc.  GIF table is sorted according to the deadline of the flow, flows with earliest 
deadlines comes first in the table. At the heart of SED is a Receive window determination 
algorithm that is used by the controller. The value of receive window as determined by this 
algorithm is placed in the TCP ACK header which is later on used by the TCP senders. The 
receive window determination algorithm keeps track of total window Twin (which is the sum 
of all sending window sizes of all TCP flows that are passing through the switch at a certain 
time). Twin is given as: 

    
 

where Wi (t) is the window size of TCP flow i at time t.  
 
Another parameter taken into account by this algorithm is the window allocation to a 
deadline flow. This window allocation is determined as follows: 
 

       
 

Where d is the size of the remaining data that is to be transmitted, t is the remaining time 
until deadline and RTTavg is the average RTT of all flows. The algorithm also keeps track of 
the total allocation (Talloc) which is incremented after every allocation (both for deadline and 
non-deadline flows). The algorithm first assigns base sending rate of 1MSS to all the non-
deadline flows. After that, if Talloc is less than Twin, it allocates window to all the deadline 
flows according to equation 8. This ensures that all flows meet their deadlines. A flow is 
dropped if its deadline is missed. If Talloc is less than Twin after the initial allocation, then 
reallocation to non-deadline flows is performed in a fair share manner. SED is compared 
with TCP, DCTCP and D2TCP in [19]. Experiments carried out in [19] with many-to-one 
communication pattern with varying number of deadline and non-deadline flows show that  
SED provides high goodput and low FCT than TCP, DCTCP and  D2TCP. However, 
goodput of SED decreases sharply when number of concurrent senders are more than 40. 
SED also requires the controller to maintain GIF table, which can cause overhead in the 
presence of large number of flows. 
 
4.1.5 Issues with TCP Receive Window Based Solutions 
 
All the TCP receive window based solutions either require switch or hypervisor to check for 
the receive window value in the header of the TCP ACK packet and then update it with new 
value, if required. This requires modification to existing switches and hypervisors. Moreover, 
all the solutions, except SCCP, have to maintain per flow information about different flows 

( )win i
i N

T W t
ε
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dWindowAlloc RTT
t
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present in the network. This can incur significant overhead in the presence of large number 
of flows. To implement these solutions, the widely used OpenFlow protocol [12][13] also 
has to be extended to enable the controller and switch to perform various actions e.g. 
congestion notification trigger sent by the switch to the controller etc. The issues, advantages 
and working details of these solutions are summarized in Table 1. Different software 
specifications (e.g. SDN controller etc.) used by authors to carry out performance analysis of 
SDTCP [6][26], SICCQ [30][31], SCCP [14] and SED [19] are also mentioned in Table 1. 
 
4.2 Solutions based on Tuning TCP Parameters 
 
Other SDN based solutions discussed in the literature take advantage of the fact that SDN 
controller can collect many network statistics to align TCP parameters according to the 
particular data center environment. Some solutions only tune initial TCP parameters [32] 
while some tune various parameters [15][33]. The fine-tuning of TCP parameters avoids 
buffer overflow and packet loss at SDN switch. These solutions are discussed below; 
 
4.2.1 Omniscient TCP (OTCP) 
 
Omniscient TCP (OTCP) [15] is a SDN based approach to mitigate the Incast issue by tuning 
various TCP parameters. OTCP takes into account the global view of the network to collect 
different network parameters e.g. latency, throughput, buffer size of SDN switch. OTCP 
measures the end-to-end latency using the OpenFlow Discovery Protocol (OFDP). The 
buffer size of SDN switch (in bytes) is calculated by the controller by sending an 
ofp_queue_get_config packet. These measurements of various network parameters are then 
used to calculate different TCP specific parameters like initial value of RTO (RTOmin), 
maximum value of RTO (RTOmax), initial value of congestion window (CWNDinit) and 
maximum value of congestion window (CWNDmax). CWNDmax is calculated by taking into 
account the BDP of the route between two end systems (S1, S2). CWNDmax is given as:  
 

   (9) 
where BDP is calculated by:  

 

     (10) 
 

RTT is the round trip time and TR is the sending rate between two hosts S1 and S2. Similarly, 
CWNDinit is calculated by dividing the CWNDmax with the number of active flows on the link.  
CWNDinit is given as: 
 

                                                                            (11) 
 

The value of β in equation 11 can be calculated by the controller by sending 
ofp_flow_stats_request to the SDN switch. The end systems get all the calculated TCP 
parameters by connecting to the controller. In this way, OTCP aligns the TCP congestion 
control parameters with the data center environment where it is used. It mitigates Incast by 
tuning the congestion window to the BDP of the network and this prevents packet loss at the 
bottleneck switch. OTCP has low FCT compared to TCP when used in a partition/aggregate 
work flow. For mice flows, it provides 12 times improvement than TCP. However, 
experiments carried out in [15] also show that in the presence of elephant flows, OTCP 
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suffers from queue build up and it cannot totally mitigate Incast issue. Consequently, authors 
have to use it with DCTCP in order to avoid the queue buildup, which ultimately leads to 
decrease in FCT. 
 

Table 1. Summary of TCP Receive Window Based Solutions 

Solution Working  
Details 

Congestion  
Control 

Issues Advantages Software 
Specifications 

SDTCP 
[6][26] 

Controller keeps 
track of the 
bandwidth of all 
elephant flows 
and uses switch 
to modify 
advertised 
window (awnd) 
in the TCP ACK 
packets. 

Sending rate 
depends on the 
congestion level 
and is calculated 
by the controller.  

Overhead is 
caused by the 
maintenance 
of Per-flow 
information. 

Performs 
better than 
TCP and 
DCTCP in 
larger 
networks 
with high 
data rate. 

Mininet, 
OpenFlow, 
FloodLight 
Controller. 

SICCQ 
 [30][31] 

Incast-on 
message is sent 
to the 
hypervisor by 
the controller of 
the senders to 
indicate 
congestion. 

The hypervisor 
keeps track of 
TCP ACK 
packets and if 
Incast-on flag is 
turned on, it then 
rewrites the 
receive window 
value in the 
ACK packets to 
1MSS. 

Hypervisor 
needs to be 
modified to 
rewrite the 
ACK packets.  

No 
modification 
is needed to 
the TCP and 
the switches. 
Low FCT 
than TCP 
and DCTCP. 

Ryu 
Controller, 
OpenFlow. 

SCCP 
    [14] 

Computes the 
Fair-Share (FS) 
for each 
incoming packet 
and then update 
the value of the 
TCP receive 
window field in 
the header. 

FS is calculated 
by diving the 
BDP of the port 
with the number 
of flows passing 
through that 
port. All 
switches in the 
end-to-end path 
calculate and 
update FS.  

TCP ACK 
packets have 
to be modified 
by the SDN 
switch. 

No per flow 
information 
needs to be 
maintained. 

Network 
Simulator-3 
(NS-3), 
OpenFlow, 
Open vSwitch 
controller 

SED 
    [19] 

Non-deadline 
flows are given 
a base sending 
rate of 1MSS. 
However, spare 
bandwidth is 
given to as 
many deadline 
flows as 
possible. 

The deadline 
flows are 
allocated 
window by 
taking into 
account the size 
of the remaining 
data that is to be 
transmitted, 
remaining time 
until deadline 
and average 
RTT of all 
flows.   

Overhead to 
maintain per 
flow 
information in 
the Global 
Information 
Flow (GIF) 
table.  

Performs 
better than 
TCP, 
DCTCP and 
D2TCP. 

Mininet, 
OpenFlow, 
FloodLight 
Controller. 
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4.2.2 OpenTCP 
 
Authors in [33] propose OpenTCP which is a TCP adaptation framework that is specially 
designed to operate in data centers that support SDN. It allows network administrators to 
tune different TCP parameters according to their policies e.g. congestion control policy. It 
also allows network administrators to choose between various TCP variants to use in their 
data center e.g. DCTCP [3], TCP Cubic [29]. In OpenTCP an application called as ‘Oracle’ 
runs at the controller. This application collects information about the network from the SDN 
switch. The ‘Oracle’ also takes into account the policies defined by the administrator before 
sending the information to the end hosts via SDN switch. End hosts then either update TCP 
parameters or choose a variant of TCP to use. Authors in [33] deploy OpenTCP in a real data 
center as a proof of concept and results show that in the presence of mice flows, OpenTCP 
can provide better FCT (64% shorter) and less packet drops than TCP when used in a many-
to-one communication topology. Also, OpenTCP can be used to take advantage of any TCP 
variant e.g.  DCTCP. OpenTCP, however, is only a framework to reduce Incast and more 
work on various aspects are needed e.g. designing congestion control policy etc. 
 
4.2.3 Tuning Initial TCP Parameters 
 
Another technique proposed in [32] to mitigate Incast problem is to tune only the initial 
values of TCP parameters i.e.  initial value of RTO (RTOmin) and initial value of congestion 
window (CWNDinit). In this approach, the controller calculates the RTOmin, CWNDinit and 
then sends them to all the senders. The controller calculates RTOmin by taking into account 
the propagation delays and time required by each buffer to offload. RTOmin is given as:  

 

                                                              
Where L is the propagation delay, B is the buffer size of switch and T is the throughput. 
Similarly, CWNDinit is matched to the BDP of the network and is given as:  
 

                                
 

Where N is the number of active TCP flows. Experiments carried out in [32] show that 
tuning RTOmin and CWNDinit according to the conditions of the data centre environment 
provides low FCT than using the default values. The results presented in [32] reveal that for 
mice flows, TCP with optimized RTOmin and CWNDinit values to 14ms and 1 segment, 
respectively, provide eight times less FCT than with default values of 200ms and 10 
segments for RTOmin and CWNDinit, respectively. However, further performance evaluation 
of this mechanism in the presence of elephant flows is needed. 
 
4.2.4 Issues with Solutions based on Tuning TCP Parameters 
 
The benefit of tuning TCP parameters based solutions is that they do not make any 
modification to the basic TCP mechanism. However, in all these solutions the controller has 
to collect various network statistics to calculate different network parameters. The controller 
also has to send the information to all the senders. This requires extra processing on the 

min
1 1

n n
i

i
i i i

BRTO L
T= =

= +∑ ∑

1
min

n
i

init i R i
ii

TCWND L
Nε

=

= = ×∑

(12) 

(13) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                  5191 

controller, which can affect its performance in the presence of large number of flows. The 
wastage of bandwidth is also an issue when controller sends information to all the senders. 
Another aspect that needs further investigation is determination of the time it takes for the 
controller to collect, compute and share the TCP parameters to all the senders. This latency 
can affect the FCT. Moreover, collecting various network parameters for each TCP flow in 
these solutions require the switch to maintain a flow table entry for every flow so that TCP 
statistics are reported to the controller on request. This may not be suitable for SDN switches 
that have fewer table entries and cannot store information related to all the flows. The issues, 
advantages and working details of these solutions are summarized in Table 2. Different 
software specifications (e.g. SDN controller etc.) used by authors to carry out performance 
analysis of OTCP [15], OpenTCP [33] and Tuning Initial TCP Parameters [32] are also 
mentioned in Table 2. 
 
4.3 Quick Recovery based Solutions 
 
In the presence of packet loss, TCP sender waits for the arrival of three duplicate ACKs or 
the timer to expire before it can retransmit the lost packets. This increases the FCT. In Quick 
recovery based solutions, lost packets are retransmitted quickly without leaving the 
communication link idle for a long time. This results in higher throughput and low FCT. 
More details on these solutions are given below; 
 
4.3.1 Retransmission-enhanced SED (RSED) 
 
RSED is an extension of SED that is discussed in section 4.1.4. The basic idea behind RSED 
as mentioned by authors in [19] is that packet loss ultimately occurs because the number of 
flows are very large in a typical data center. Therefore, authors propose that the TCP sender, 
in the event of loss packets, should retransmit quickly instead of waiting for the timer to 
expire. In the event of packet loss, the SDN switch encapsulates the dropped packet in an 
OpenFlow Packet-In message and sends it to the controller. The controller has a GIF table 
(as mentioned in section 4.1.4) that holds records of many flows like size and identification 
number of flow, deadline, remaining flow size etc. The controller extracts the dropped 
packet from the Packet-In message and then sends Triple Duplicate ACKs to the sender 
(source) of the dropped packet. The switch forwards the Triple Duplicate ACKs to the sender 
based on the entry in its routing table. The sender on receiving the Triple Duplicate ACKs 
retransmits quickly without waiting for the timer to expire. RSED is compared with SED, 
TCP, DCTCP and D2TCP in [19].  Experiments carried out in [19] with many-to-one 
communication pattern (six senders transmitting flows to one receiver) show that RSED 
performs better than SED, TCP, DCTCP and D2TCP. For example, it provides better 
goodput and low FCT than SED, TCP, DCTCP and D2TCP even with number of flows equal 
to 100. However, the issue with RSED is that in the presence of heavy congestion on the 
switch the Triple Duplicate ACKs sent by the controller may also get lost. The sender will 
then retransmit only when the timer expires. 
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Table 2. Summary of Tuning TCP Parameters Based Solutions 

 
 
4.3.2 Explicit Packet Drop Notification (PDN) 
 
In Explicit PDN technique [34], SDN switch explicitly sends the details of the dropped 
packet to the sender so that it is retransmitted. When the packet loss occurs in the switch 
because of congestion, the switch removes few important fields from the packet that are 
needed to recover the lost data. These important fields are source and destination IP 
addresses, source and destination port numbers, sequence numbers and length of payload. 
This data of size 20 bytes is called as Packet Drop Notification Data (PDND). PDND is 
stored locally by the switch in a separate queue called as notification queue. SDN 
infrastructure (controller and switches) enables the PDND to reach the sender whose data 
packet was lost. When the TCP flow in the SDN switches are setup by the controller, all the 
SDN switches in the network are then also required to create a reverse path so that the 
PDND reaches the correct sender. PDND is attached to the frame header when any frame to 

Solution Working  
Details 

Congestion 
Control 

Issues Advantages Software 
Specifications 

OTCP 
[15] 

Fine-tunes 
various TCP 
parameters 
e.g. latency, 
throughput, 
buffer size of 
switch. 

Tunes the 
congestion 
window to 
the BDP of 
the route 
between two 
systems to 
prevent 
packet loss. 

Suffers from 
queue build up 
in the presence 
of elephant 
flows.  

Twelve times 
improvement 
in FCT than 
TCP for mice 
flows. It can 
also be used 
with DCTCP 
to further 
reduce the 
FCT.  

Mininet, 
OpenFlow, 
Go Controller 
(Specially 
designed to 
manage Open 
vSwitch 
software 
switches). 

OpenTCP 
[33] 

Different TCP 
parameters are 
tuned 
according to 
policies and 
gives choice 
between 
various TCP 
variants to use 
in the data 
center. 

Defining 
congestion 
control 
policies (e.g. 
which 
network 
parameters 
to collect 
etc.) are left 
on the 
network 
operator. 

Only a 
framework to 
reduce Incast. 
More work is 
needed on 
various 
aspects e.g. 
designing 
congestion 
control policy 
etc.  

Performs 
better than 
TCP in terms 
of FCT.  

No specific 
controller is 
mentioned. 
Oracle 
(application 
running at the 
controller). 

Tuning 
Initial 
TCP 

Parameters 
[32] 

Tunes only 
minimum 
retransmission 
timer and 
initial 
congestion 
window. 

Initial 
Congestion 
window 
matches the 
BDP of the 
network to 
prevent 
packet loss. 

Extra 
processing at 
the controller. 
More 
investigation 
in the presence 
of elephant 
flows is 
needed. 

Eight times 
lower FCT 
than non-
tuned  
retransmission 
timer and non-
tuned initial 
congestion 
window. 

Network 
Simulator-3 
(NS-3). No 
specific 
controller is 
mentioned. 
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the next hop that is destined to the same source traverses the switch. In this way, PDND is 
carried along the path to the original sender of data.  The sender on receiving the PDND 
quickly retransmits the actual packet that was lost. Simulations carried out in [34] show that 
TCP with PDN provides low FCT even in the presence of large number of senders. The 
results in [34] show that TCP suffers from packet loss and timeouts (with a delay of 200ms) 
when number of senders are more than 72. However, in the same scenario, TCP with PDN 
retransmits quickly with no timeouts and therefore, results in low FCT.   
 
4.3.3 Issues with Quick Recovery based Solutions 
 
Quick recovery based solutions require the SDN switch to keep track of lost packets. This is 
an overhead for SDN switch and is impractical with large packet loss, which may occur with 
large number of senders. Both RSED and Explicit PDN mechanisms require the modern 
SDN switches to be modified. In RSED, SDN switches have to send message to controller 
when packet loss occurs; this feature is not supported by modern SDN switches. Switches 
also not support modifying frame header (addition of 20 bytes) and maintaining separate 
queues for PDND in Explicit PDN mechanism. In RSED, Triple Duplicate ACKs that are 
sent to the sender results in extra processing by the controller that is already loaded with 
other tasks to perform in the network.  
 
Both RSED and Explicit PDN presented in [19] and [34], do not determine the total delay it 
takes for the sender to retransmit when a packet loss occurs. In RSED, this delay consists of 
notifying the controller of packet loss by switch, generation of Triple Duplicate ACKs by the 
controller and arrival of Triple Duplicate ACKs at the sender. This delay needs further 
investigation because if this delay is larger than the RTO timer at the sender then there is no 
advantage of sending Triple Duplicate ACKs. Similarly, in Explicit PDN mechanism this 
delay consists of storing PDND in a separate queue, keeping track of frames heading to the 
direction of the sender, adding twenty bytes to frame header and arrival of PDND to the 
sender. This delay also needs further study because if this delay is larger than the RTO timer 
at the sender then there is no advantage of sending Explicit PDN. The issues, advantages, 
and working details of RSED [19] and Explicit PDN [34] are summarized in Table 3. 
Different software specifications (e.g. SDN controller etc.) used by authors to carry out 
performance analysis of RSED [19] and Explicit PDN [34] are also mentioned in Table 3. 
 
 
4.4 Application Layer based Solutions 
 
Application layer based solutions either restrict the number of senders who want to send data 
at the same time [35] or modify the existing SDN architecture by running an application on 
the controller that helps in decoupling the policy resolution layer from the policy 
enforcement layer in network service appliances e.g. Firewalls [36]. These solutions do not 
modify the TCP congestion control mechanism. The details of these solutions are given 
below; 
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4.4.1 Send in Group (SIG) 
 
Send in Group (SIG) [35] avoids packet loss and buffer overflow at the switch by not 
allowing all the senders to transmit data at the same time. It divides the senders into smaller 
groups and then let the each group transmit one after the other. SDN controller creates the 
flow table and sends it to the SDN switch, which forwards it to all the senders. When 
multiple senders want to send data to one receiver simultaneously, the controller invokes the 
SIG mechanism. It calculates the number of groups Ng of the senders so that the Incast issue 
is mitigated. 
 

Table 3. Summary of Quick Recovery Based Solutions 

 
 
If number of senders that simultaneously want to send data to same receiver is N, Ng is then 
given as: 
 

      
 
Where K is adapted from [8], where authors predict the start of Incast in terms of maximum 
concurrent senders with a specific data block size. Therefore, K is the number of concurrent 
senders where the network goodput is maximum and any further increase in this number 
causes the goodput collapse. The value of K as calculated by [8] varies with data block size. 
The values of K are 13, 7 and 4 for 16KB, 32KB and 64KB data blocks, respectively. The 
controller chooses K based on number of concurrent senders and data block size. It calculates 
Ng and then give instructions to the SDN switch. The SDN switch then instructs each sender 
group and they take turns to send data. SIG avoids packet loss and simulations carried out in 
[35]  show that with 32KB and 64KB data block, TCP throughput collapse did not occur 
when number of senders are increased from 13 and 7, respectively. The TCP throughput was 

g
NN
K
 =   

Solution Working  
Details 

Congestion 
Control 

Issues Advantages Software 
Specifications 

RSED 
     [19] 

Controller sends a 
Triple Duplicate 
ACK to the TCP 
sender so that it 
can retransmit 
quickly. 

Same as 
SED. 

Generating 
Triple 
Duplicate 
ACK is 
extra load 
on the 
controller. 

RSED provides 
better goodput 
and low FCT 
than SED, TCP, 
DCTCP and 
D2TCP.  

Mininet, 
OpenFlow, 
FloodLight 
Controller. 

Explicit 
PDN 

     [34] 

Switch sends 
specific details of 
packet that was 
lost to the sender 
so that it can be 
retransmitted 
quickly. 

Same as 
TCP. 

Modern 
switches do 
not support 
modifying 
Frame 
header. 

TCP with 
Explicit PDN 
provides low 
FCT than TCP 
without Explicit 
PDN in the 
presence of 
large number of 
senders. 

Network 
Simulator-3 
(NS-3). No 
specific 
controller is 
mentioned. 
 

(14) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                  5195 

also very stable with no fluctuations (because of no packet loss).  However, authors in [35] 
have only considered throughput as a performance metric of SIG. FCT is another important 
metric that should be discussed and investigated. Moreover, authors carry out simulations for 
only 30 concurrent senders, which is not a large number. Performance of SIG should be 
investigated with large number of concurrent senders. SIG is theoretically a good way to 
prevent packet loss and consequently avoids Incast, however, more research needs to be 
conducted to prove its efficiency. 
 
4.4.2 EnforSDN 
 
EnforSDN [36] is a novel way of using network service appliances e.g Firewalls, Intrusion 
Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) etc. into an environment 
that uses SDN. In SDN, policy configuration i.e. control decisions are made by a central 
controller based on the global knowledge and it is delivered to programmable switches that 
implement policy resolution and enforcement. However, this approach leads to many issues 
[36] e.g. latency due to processing time at the service appliance, network propagation delay 
on path towards switches and queuing delay in the forwarding devices that have large traffic 
passing through them. EnforSDN differs from SDN due to the fact that it decouples the 
policy resolution layer from the policy enforcement layer in network service appliances. The 
decoupling of policy resolution and policy enforcement removes the above mentioned 
shortcomings in SDN resulting in decrease of appliance load and reduction of the network 
load over the links surrounding the appliances which ultimately leads to mitigation of the 
Incast issue [36]. An application called EnforSDN manager runs on top of the controller that 
connects with policy resolution instances running on appliances. This communication 
channel between EnforSDN manager and policy resolution instance enables the appliance to 
inform the EnforSDN manager of its policy (which could be blocking, logging, modifying or 
rate limiting the flow) and also request it to enforce this policy. The EnforSDN manager then 
configures one or more switches to enforce the policy. The appliance can decide which 
policy to enforce locally and which policy to be enforced remotely. Results presented in [36] 
show that in a many-to-one communication pattern, EnforSDN reduces the load on the link 
towards the firewall and mitigates the Incast issue. EnforSDN enabled firewall provides 
400%-500% improvement in throughput than regular firewall. However, authors in [36] have 
only used firewall as an example to implement EnforSDN. More research is needed to 
extend this mechanism to incorporate other network appliances like IDSs, IPSs etc. 
 
4.4.3 Issues with Application Layer based Solutions 
 
Both SIG [35] and EnforSDN [36] require extra processing at the controller. SIG requires 
controller to calculate the value of Ng and then send it to the SDN switch. EnforSDN, 
however, modifies the SDN architecture and it requires an added application (i.e. EnforSDN 
manager) to run on the controller that communicates with the instances running on the 
network service appliances. The issues, advantages and working details of these solutions are 
summarized in Table 4. Different software specifications (e.g. SDN controller etc.) used by 
authors to carry out performance analysis of SIG [35] and EnforSDN [36] are also 
mentioned in Table 4. 
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5. Comparison of Different Solutions and Future Research Directions 
In the last section, all SDN based solutions to mitigate TCP Incast issue are discussed and 
various issues associated with these solutions are highlighted. However, it is also important 
to compare different solutions proposed in the literature in terms of various performance 
metrics.   
These performance metrics help to determine the usefulness of any solution in terms of 
deployment in cloud data centers. A comparison of different solutions in terms of various 
performance metrics along with future research directions are discussed in this section. 
Performance comparison of various solutions are summarized in Table 5. 
 

Table 4. Summary of Application Layer Based Solutions 
 

 
 
5.1 Maximum Number of Concurrent Senders 
 
An important performance metric is the maximum number of concurrent senders supported 
by a particular solution before throughput collapses because of the Incast issue. There can be 
hundreds of concurrent senders inside the data centers that take part in many-to-one 
communication work flow. In many-to-one communication pattern, increasing the number of 
concurrent senders increases the onset of throughput collapse because of the Incast issue. 
Therefore, it is an important metric to consider when evaluating any Incast solution. This 
survey finds that solutions proposed in the literature do not support a large number of 
senders, only SCCP [14] can support 400 simultaneous senders while OpenTCP [33] was 

Solution Working 
Details 

Congestion 
Control 

Issues Advantages Software 
Specifications 

SIG 
[35] 

Divides the 
senders into 
smaller groups 
and then let 
each group 
transmit one 
after the other. 

Controls 
congestion by 
not allowing 
all senders to 
transmit 
simultaneously
. 

Supports 
only 30 
concurrent 
senders. 
Extra 
processing at 
the 
controller. 

Higher 
throughput 
than TCP. 

NOX 
Controller, 
OpenFlow. 

EnforSDN 
[36] 

Decouples the 
policy 
resolution layer 
from the policy 
enforcement 
layer in network 
service 
appliances.  

Decoupling of 
policy 
resolution layer 
from the policy 
enforcement 
layer reduces 
the network 
load over the 
links 
surrounding 
the network 
appliances. 

SDN 
architecture 
needs to be 
modified. 
Implemented 
only for 
firewalls.  

EnforSDN 
enabled 
firewall 
provides 
400%-500% 
improvement 
in throughput 
than regular 
firewall. 

Mininet, 
OpenFlow, 
Open vSwitch 
controller. 
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implemented in a real data center with thousands of nodes but it is not clear how many 
concurrent senders it can support. Most of the solutions support less number of concurrent 
senders e.g. SED [19] and OTCP [15] can support 40 and 100 simultaneous senders, 
respectively.  Future research should be directed in designing solutions that can support large 
number of concurrent senders. 
 
5.2 Comparison with Non-SDN based Solutions 
 
In order to gauge the performance of all the SDN based solutions, it is important to carry out 
their performance comparison (in terms of throughput, FCT, number of concurrent senders 
supported etc.) with other non-SDN based solutions. It is found that majority of the studies 
have taken the performance of DCTCP [3] as a benchmark to compare the performance of 
their solutions. However, DCTCP [3] suffers with many issues e.g. it shows poor scalability 
and cannot cope with more than 35 concurrent senders [4][5]. Other solutions e.g. ICTCP [9] 
and RWNDQ [11] have shown better performance than DCTCP [3]. Future research work 
should carry out comparison with solutions other than DCTCP [3] so that the true advantage 
of using SDN in cloud data centers can be highlighted.  
 
5.3 Comparison with SDN based Solutions 
 
It is interesting to note that none of the existing solutions discussed in section 4 have 
compared their work with other SDN based solutions. As mentioned above, majority of the 
solutions have compared their work with non-SDN based solutions (i.e. DCTCP [3]). 
However, in future performance comparison with other SDN based solutions should also be 
carried out. 
 
5.4 Number of Mice and Elephant Flows  
 
Another important performance metric is the number of mice and elephant flows considered 
by the authors when they evaluate their respective solutions. Studies [3][17][37] suggest that 
elephant and mice flows are in the ratio of 1:3 in a typical cloud data center. We consider 
this ratio and evaluate various solutions. It is found that only [30][31] have considered this 
ratio (with 126 mice flows and 42 elephant flows) when they evaluate the performance of 
SICCQ. Most of the studies have either not considered elephant flows or have only 
considered one elephant flow, which are not representatives of a typical cloud data center. 
Future SDN based solutions to mitigate Incast issue should be evaluated by taking elephant 
and mice flows in the ratio of 1:3.  
 
5.5 Calculation of Delay at the Controller 
 
Critical evaluation of all the four types of solutions in section 4 reveal that SDN controller 
plays an important role in implementing any SDN based solution. It performs various tasks 
to implement these solutions e.g. it runs congestion control algorithms in TCP receive 
window based solutions, calculates various TCP parameters in Tuning TCP parameters 
based solutions etc. All these tasks require extra processing by the controller and this can 
affect its performance. It is therefore, important to calculate the time the controller takes to 
perform various tasks in a particular SDN based solution. However, it can be noted from 
Table 5 that only authors in [26] and [33] have calculated the delay at the controller for 
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SDTCP and OpenTCP, respectively. Rest of the solutions have not considered this important 
performance metric. Future research in this area should consider calculating delay at the 
controller in performing various tasks. 
 
 5.6 Fairness between Mice and Elephant flows 
 
Another important performance metric is the fairness between mice and elephant flows. 
Elephant flows and mice flows co-exist in a typical cloud data center. However, a particular 
solution may allocate more data rate to mice flows and this can starve the elephant flows in 
the long run. It is therefore, important to determine whether this metric (fairness) is taken 
into 
account by various solutions discussed in section 4. It can be noted from Table 5 that few 
solutions (e.g. SDTCP [6][26], SICCQ [30][31], SCCP [14] and OTCP [15]) have 
considered this performance metric and results show all these four solutions provide fairness 
in allocating data rate to mice and elephant flows. Most of the studies have ignored this 
metric when evaluating their solutions. Future research in this area should also consider this 
metric when evaluating the proposed solution. 
Survey results clearly indicate that all the four types of solutions suffer from various issues 
that make them impractical to be deployed in a cloud data center.  From Table 5, it is also 
noted that TCP receive window based solutions like SDTCP [6][26], SCCP [14], SICCQ 
[30][31] and Tuning TCP based solution like OTCP [15], OpenTCP [33] have the potential 
to be deployed in a real cloud data center as these solutions address most of the performance 
metrics discussed above. However, all these solutions still need further development and 
performance evaluation before they can be deployed in a cloud data center. The research 
directions given in this section will enable future researchers to address the shortcomings in 
the current SDN based solutions discussed in the literature. It will also help them to design 
SDN based solutions to mitigate Incast issue by taking into account various performance 
metrics that are required for deployment in cloud data centers. 

 

6. Conclusion 
In this survey, various SDN based solutions  proposed in the existing literature to mitigate 
the TCP Incast issue are classified into four types i.e. TCP receive window based solutions, 
Tuning TCP parameters based solutions, Quick recovery based solutions and Application 
layer based solutions. The working principles, advantages and issues associated with all the 
solutions are discussed in detail. All the solutions are also critically evaluated and compared 
in terms of various performance metrics that are important for deployment in cloud data 
centres. It is noted that all the SDN based solutions suffer from various issues; and need 
more development and performance evaluation before they can be deployed in cloud data 
centres. Various research directions are also proposed in this survey that will enable future 
researchers to propose better SDN based solutions to mitigate the Incast problem. 
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Table 5. Comparison of Different SDN Based Solutions 

 

 

Taxonomy 
of SDN 
Based 

Solutions  

Solution Maximum 
Number 

 of 
Concurrent 

Senders  

Comparison 
with  

Non-SDN 
  Solutions  

Number 
of  

Mice and 
Elephant  

Flows 

Delay at 
the 

Controller  

Fairness 
between 
Various 
Flows 

TCP 
Receive 
Window 

Based 
Solutions 

 
SDTCP 
[6][26] 

120 DCTCP 119 mice,1 
elephant Yes Yes 

SICCQ 
[30][31] 145 DCTCP, 

RWNDQ 

126 mice, 
42 

elephant 
No Yes 

SCCP 
[14] 400 DCTCP 400 mice, 

1 elephant  N/A Yes 

SED 
[19] 40 DCTCP, 

D2TCP 
5 mice, 1 
elephant No No 

Tuning TCP 
Parameters 

Based 
Solutions 

OTCP 
     [15] 100 DCTCP 

90 mice, 
one 

elephant 
No Yes 

OpenTCP 
     [33] 

Not Clearly 
Mentioned 
(3,864 total 

nodes in 
SciNet HPC 
data center). 

No 

Mix of 
both 
(Not 

Mentioned
clearly) 

 

Yes No 

Tuning 
Initial  
TCP 

Parameters 
      [32] 

10 No 

10 mice, 0 
elephant 

No No 

Quick 
Recovery 

Based 
Solutions 

RSED 
     [19] 100 DCTCP, 

D2TCP 
5 mice, 1 
elephant No No 

Explicit 
PDN 

      [34] 
150 No 

150 mice, 
0 elephant No No 

Application 
Layer Based 

Solutions 

SIG 
      [35] 30 No 

30 mice, 0 
elephant No No 

EnforSDN 
       [36] 32 No 

 Mice and 
Elephant 
flows are 
randomly 
distributed 

No No 



 5200                                                                 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey 

References 
[1] New AWS Region in France. Retrieved on May 5, 2018. Article (CrossRef Link) 
[2] Farzad Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based 

Technology,” International Journal of Machine Learning and Computing, vol. 2, no. 1, pp. 39, 
2012. Article (CrossRef Link) 

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji 
Prabhakar, Sudipta Sengupta and Murari Sridharan, “Data Center TCP (DCTCP),” in Proc. of 
ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp. 63-74, 2010.  
Article (CrossRef Link) 

[4] Yongmao Ren, Yu Zhao, Pei Liu, Ke Dou and Jun Li, “A Survey on TCP Incast in Data Center 
Networks,” International Journal of Communication Systems, vol. 27, no. 8, pp.1160-1172, 2014. 
Article (CrossRef Link) 

[5] Jiao Zhang, Fengyuan Ren, and Chuang Lin, “Survey on Transport Control in Data Center 
Networks,” IEEE Network, vol. 27, no. 4, pp. 22-26, 2013. Article (CrossRef Link) 

[6] Lu Yifei, Zhen Ling, Shuhong Zhu and Ling Tang, “SDTCP: Towards Datacenter TCP 
Congestion Control with SDN for IoT Applications,” Sensors, Vol.17, no. 1, 2017.  
Article (CrossRef Link) 

[7] J. F. Kurose and K. W. Ross, “Computer Networking: A Top-Down Approach Featuring the 
Internet,”  3rd Edition, Pearson Education, Inc., 2005. 

[8] Yanpei Chen, Rean Griffit, David Zats and Randy H. Katz, “Understanding TCP Incast and Its 
Implications for Big Data Workloads,” University of California at Berkeley, Technical Report, 
2012. Article (CrossRef Link) 

[9] Haitao Wu,  Zhenqian Feng, Chuanxiong Guo and Yongguang Zhang, “ICTCP: Incast Congestion 
Control for TCP in Data-Center Networks,” IEEE/ACM Transactions on Networking, vol. 21, no. 
2 pp. 345-358, 2013. Article (CrossRef Link) 

[10] Balajee Vamanan, Jahangir Hasan and T. N. Vijaykumar, “Deadline Aware Data Center TCP 
(D2TCP),” in Proc. of ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 
115-126, 2012. Article (CrossRef Link) 

[11] Ahmed M Abdelmoniem and Brahim Bensaou, “Efficient Switch-assisted Congestion Control for 
Data Centers: An Implementation and Evaluation,” in Proc. of Proceedings IEEE International 
Performance Computing and Communications Conference (IPCCC), pp. 1-8, 2015.  
Article (CrossRef Link) 

[12] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka and Thierry 
Turletti, “A Survey of Software-defined Networking: Past, Present, and Future of Programmable 
Networks,” IEEE Communications Surveys and Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014. 
Article (CrossRef Link) 

[13] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg, 
Siamak Azodolmolky and Steve Uhlig, “Software-Defined Networking: A Comprehensive 
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.14-76, 2015. Article (CrossRef Link)  

[14] Jaehyun Hwang, Joon Yoo, Sang-Hun Lee and Hyun-Wook Jin, “Scalable Congestion Control 
Protocol Based on SDN in Data Center Networks,” in Proc. of IEEE Global Communications 
Conference (GLOBECOM), pp. 1-6, 2015. Article (CrossRef Link) 

[15] Simon Jouet, Colin Perkins and Dimitrios Pezaros, “OTCP: SDN-Managed Congestion Control 
for Data Center Networks,” in Proc. of IEEE/IFIP Network Operations and Management 
Symposium (NOMS), pp. 171-179, 2016. Article (CrossRef Link) 

[16] Chunghan Lee, Yukihiro Nakagawa, Kazuki Hyoudou, Shinji Kobayashi, Osamu Shiraki and 
Takeshi Shimizu, “Flow-Aware Congestion Control to Improve Throughput under TCP Incast in 
Datacenter Networks,” in Proc. of IEEE Computer Software and Applications Conference, vol. 3, 
pp. 155-162, 2015. Article (CrossRef Link) 

 [17] Theophilus Benson, Aditya Akella and David A. Maltz, “Network Traffic Characteristics of 
Data Centers in the Wild,” in Proc. of Proceedings of the ACM SIGCOMM Conference on 
Internet measurement, pp. 267-280, 2010. Article (CrossRef Link) 

https://aws.amazon.com/blogs/aws/coming-in-2017-new-aws-region-in-france/
https://doi.org/10.7763/ijmlc.2012.v2.87
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1002/dac.2402
https://doi.org/10.1109/mnet.2013.6574661
https://doi.org/10.3390/s17010109
https://doi.org/10.21236/ada561775
https://doi.org/10.1109/tnet.2012.2197411
https://doi.org/10.1145/2377677.2377709
https://doi.org/10.1109/PCCC.2015.7410274
https://doi.org/10.1109/surv.2014.012214.00180
https://doi.org/10.1109/jproc.2014.2371999
https://doi.org/10.1109/glocom.2015.7417067
https://doi.org/10.1109/noms.2016.7502810
https://doi.org/10.1109/compsac.2015.225
https://doi.org/10.1145/1879141.1879175


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                  5201 

[18] Gill Phillipa, Navendu Jain and Nachiappan Nagappan, “Understanding Network Failures in Data 
Centers: Measurement, Analysis, and Implications,” in Proc. of ACM SIGCOMM Computer 
Communication Review, vol. 41, no. 4, pp. 350-361, 2011. Article (CrossRef Link) 

[19] Yifei Lu, “SED: An SDN-based explicit-deadline-aware TCP for cloud Data Center Networks,” 
Tsinghua Science and Technology, vol.  21, no. 5, pp. 491-499, 2016. Article (CrossRef Link)  

[20] Christo Wilson, Hitesh Ballani, Thomas Karagiannis and Ant Rowtron, “Better Never than Late: 
Meeting Deadlines in Datacenter Networks,” in Proc. of ACM SIGCOMM Computer 
Communication Review, vol. 41, no. 4, pp. 50-61, 2011. Article (CrossRef Link) 

[21] Cost of Latency. Retrieved on May 5, 2018. Article (CrossRef Link) 
[22] B. Thiruvenkatama and Mukesh Krishnana, “Survey on TCP Incast Problem in Datacenter 

Networks,” International Journal of Control Theory and Applications, vol. 9, no. 60, 2016. 
Article (CrossRef Link) 

[23] Fung Po Tso, Simon Jouet, and Dimitrios P. Pezaros, “Network and Server Resource 
Management Strategies for Data Centre Infrastructures: A Survey,” Computer Networks, vol. 106, 
pp. 209-225, 2016. Article (CrossRef Link) 

[24] Guan Xu, Jun Yang, and Bin Dai, “Challenges and Opportunities on Network Resource 
Management in DCN with SDN,” in Proc. of IEEE International Conference on Big Data, pp. 
1785-1790, 2015. Article (CrossRef Link) 

[25] Prasanthi Sreekumari and Jaeil Jung, “Transport Protocols for Data Center Networks: A Survey 
of Issues, Solutions and Challenges,” Photonic Network Communications, vol. 31, no. 1, pp. 112-
128, 2016. Article (CrossRef Link) 

[26] Lu Yifei and Shuhong Zhu, “SDN-based TCP Congestion Control in Data Center Networks,” in 
Proc. of IEEE International Performance Computing and Communications Conference (IPCCC), 
pp. 1-7, 2015. Article (CrossRef Link) 

[27] James Roberts, Johnny Skandalakis, Richard Foard and Jason Choi, “A Comparison of SDN 
based TCP Congestion Control with TCP Reno and CUBIC,” Technical Report, 2016.  
Article (CrossRef Link) 

[28] Jitendra Padhye, Victor Firoiu, Donald F. Towsley and James F. Kurose, “Modeling TCP Reno 
Performance: A Simple Model and its Empirical Validation,” IEEE/ACM Transactions on 
Networking (ToN), vol. 8, no. 2, pp. 133-145, 2000. Article (CrossRef Link)  

[29] Sangtae Ha, Injong Rhee and Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed TCP 
Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64-74, 2008.  
Article (CrossRef Link) 

[30] Ahmed M Abdelmoniem, and Brahim Bensaou, “SDN-based Incast Congestion Control 
Framework for Data Centers: Implementation and Evaluation,” Technical Report, Hong Kong 
University of Sciences and Technology, 2016. Article (CrossRef Link) 

[31] Ahmed M. Abdelmoniem, Brahim Bensaou and Amuda James Abu, “Mitigating Incast-TCP 
Congestion in Data Centers with SDN,” International Annals of Telecommunications Journal, 
Springer - Special Issue on Cloud Communications and Networking, 2017.  
Article (CrossRef Link) 

[32] Simon Jouet and Dimitrios P. Pezaros, “Measurement-based TCP Parameter Tuning in Cloud 
Data Centers,” in Proc. of IEEE International Conference on Network Protocols (ICNP),  pp. 1-3, 
2013. Article (CrossRef Link) 

[33] Monia Ghobadi, Soheil Hassas Yeganeh and Yashar Ganjali, “Rethinking End-to-End 
Congestion Control in Software Defined Networks,” in Proc. of Proceedings of the ACM 
Workshop on Hot Topics in Networks, pp. 61-66, 2012. Article (CrossRef Link) 

[34] Yu Xia, Ting Wang, Zhiyang Su and Mounir Hamdi, “Preventing Passive TCP Timeouts in Data 
Center Networks with Packet Drop Notification,” in Proc. of International Conference on Cloud 
Networking (CloudNet), pp. 173-178, 2014. Article (CrossRef Link) 

[35] Jianhua Xu, Hongxiang Guo, Jian Wu, Jintong Lin, DongXu Zhang, Gang Chen, Xingping 
Zhang and Chao Chen, “SIG: Solution to TCP Incast in SDN Network Based Openflow Protocol,” 
in Proc. of Asia Communications and Photonics Conference, pp. AW4I-5. Optical Society of 
America, 2013. Article (CrossRef Link) 

https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1109/tst.2016.7590318
https://doi.org/10.1145/2043164.2018443
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://doi.org/10.1109/iscc.2016.7543904
https://doi.org/10.1016/j.comnet.2016.07.002
https://doi.org/10.1109/bigdata.2015.7363950
https://doi.org/10.1007/s11107-015-0550-y
https://doi.org/10.1109/pccc.2015.7410275
https://doi.org/10.13140/RG.2.1.1292.6962
https://doi.org/10.1109/90.842137
https://doi.org/10.1145/1400097.1400105
https://pdfs.semanticscholar.org/d614/23ee06cbce6d121bddb50bbcc7d5e6029c64.pdf
https://doi.org/10.1007/s12243-017-0608-1
https://doi.org/10.1109/icnp.2013.6733644
https://doi.org/10.1145/2390231.2390242
https://doi.org/10.1109/cloudnet.2014.6968988
https://doi.org/10.1364/acp.2013.aw4i.5


 5202                                                                 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey 

[36] Yaniv Ben-Itzhak, Katherine Barabash, Rami Cohen, Anna Levin and Eran Raichstein, 
“EnforSDN: Network Policies Enforcement with SDN,” in Proc. of IFIP/IEEE International 
Symposium on Integrated Network Management (IM), pp. 80-88, 2015. Article (CrossRef Link) 

[37] Ahmed M. Abdelmoniem and Brahim Bensaou, “Reconciling Mice and Elephants in Data Center 
Networks,” in Proc. of IEEE International Conference on Cloud Networking (CloudNet), pp. 
119-124, 2015. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Zawar Shah completed his M.EngSc and PhD degree in Telecommunications 
from the University of New South Wales (UNSW), Sydney, Australia in 2004 and 
2009, respectively. He was the head of Telecommunications and Computer 
Networks group at School of Electrical Engineering and Computer Science 
(SEECS), which is a constituent college of National University of Sciences and 
Technology (NUST), Pakistan. He is currently working as a Senior Lecturer at 
Whitireia Community Polytechnic, Auckland, New Zealand. His research interests 
include Quality of Service issues in Wireless Networks, Software Defined 
Networking, Cloud           Computing, Network Architectures and Protocols. 
 

 

https://doi.org/10.1109/inm.2015.7140279
https://doi.org/10.1109/cloudnet.2015.7335293

