
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, Nov. 2018 5179
Copyright ⓒ 2018 KSII

Mitigating TCP Incast Issue in Cloud Data
Centres using Software-Defined

Networking (SDN): A Survey

Zawar Shah
 Whitireia Community Polytechnic
 450 Queen Street, Auckland

New Zealand
[e-mail :zawar.shah@whitireia.ac.nz]

Received April 10, 2017; revised June 28, 2017; accepted May 3, 2018;

published November 30, 2018

Abstract

Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data
centers today. However, cloud data centers using TCP experience many issues as TCP was
designed based on the assumption that it would primarily be used in Wide Area Networks
(WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This
issue arises because of the many-to-one communication pattern that commonly exists in the
modern cloud data centers. In many-to-one communication pattern, multiple senders
simultaneously send data to a single receiver. This causes packet loss at the switch buffer
which results in TCP throughput collapse that leads to high Flow Completion Time (FCT).
Recently, Software-Defined Networking (SDN) has been used by many researchers to
mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to
the Incast issue is carried out. In this survey, various SDN based solutions are classified into
four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based
solutions, Quick Recovery based solutions and Application Layer based solutions. All the
solutions are critically evaluated in terms of their principles, advantages, and shortcomings.
Another important feature of this survey is to compare various SDN based solutions with
respect to different performance metrics e.g. maximum number of concurrent senders
supported, calculation of delay at the controller etc. These performance metrics are important
for deployment of any SDN based solution in modern cloud data centers. In addition, future
research directions are also discussed in this survey that can be explored to design and
develop better SDN based solutions to the Incast issue.

Keywords: Software-Defined Networking (SDN), Incast Issue, Cloud Data Centres,
Congestion Control, Transmission Control Protocol (TCP).

http://doi.org/10.3837/tiis.2018.11.001 ISSN : 1976-7277

 5180 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

1. Introduction

Data centres form the backbone for cloud operators to provide their clients with access to
cloud services that range from simple process like online storage to that of computationally
sensitive services running on virtual machines. More and more individuals and enterprises
are taking advantage of the different cloud service models (i.e. Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)) that are available to
them. The rapid growth in the usage of services provided by cloud computing has led to the
creation of new data centres by cloud providers e.g. Amazon plans to establish a new data
centre in Paris in 2017 [1]. Virtualization is the foundation on which cloud providers build
their business. The hypervisor, also called Virtual Machine Monitor (VMM), is an integral
component of virtualization that creates and runs Virtual Machines (VMs) [2]. In cloud data
centers, the majority of flows tend to be short, whereas the majority of packets belong to a
few long-lived large flows. The short flows known as mice are related to bursty, latency-
sensitive applications like search results. The long-lived flows known as elephants are
usually large transfers, such as backups or back-end operations [3]. For efficient
communication, cloud data centers must employ data transfer techniques and protocols that
are not only highly reliable but also capable of maintaining high throughput. The reliable
Transmission Control Protocol (TCP) is the widely used transport protocol for data transfer
within the cloud data centres [3][4][5][6].

TCP was designed based on the assumption that it would primarily be used in Wide Area
Networks (WANs) and is therefore, not optimized to be used in a typical data centre
environment that consists of limited-size switch buffers, low propagation delays and high-
speed links [3][4]. For example, the minimum Retransmission Timeout (RTO) timer of TCP
is set to 200ms which is too large for a data centre environment that has very low Round
Trip Times (RTTs) [4][5]. Another major issue with TCP is the fact that it does not take into
account the extent of congestion and reduces congestion window to half or to 1 Maximum
Segment Size (MSS) as a result of a packet loss [3][7]. These issues with TCP can severely
impact the throughput that is needed to perform various tasks inside the cloud data centers.
Consequetly, TCP suffers from many issues inside the cloud data centers. One of the major
issues with TCP inside the cloud data centers that has been widely discussed in the literature
is the Incast issue [3][4][5][6].

Incast issue arises because of the partition/aggregation workflow that is present in the
cloud data centers. The aggregator divides the query and sends it to various worker nodes.
After resolving the query, worker nodes send packets to the aggregator at the same time
which results in a many-to-one communication pattern. The switch (with limited buffer
capacity) present between the worker nodes and the aggregator is not able to store all the
packets because of this many-to-one communication pattern and this results in packet loss at
the switch. The aggregator now has to wait till TCP retransmits the loss packets. This results
in TCP throughput collapse which increases the time required to complete the query
[3][4][5][6][8]. Many techniques have been proposed in the literature to address the Incast
problem. Some solutions to the Incast issue that have been used by many studies in the
literature, as a benchmark, are Data Center TCP (DCTCP) [3], Incast Congestion Control
TCP (ICTCP) [9], Deadline-Aware Data Center TCP (D2TCP) [10], Receiver Window
Queue (RWNDQ) [11] etc. Recently, Software-Defined Networking (SDN) [12][13] based
solutions to mitigate the Incast issue have also been discussed in the literature
[6][14][15][16].

In this work, we carry out a detailed survey of various SDN based solutions proposed in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5181

the current literature to mitigate the TCP Incast issue. We classify the various SDN based
solutions into four categories i.e. TCP receive window based solutions, Tuning TCP
parameters based solutions, Quick recovery based solutions and Application layer based
solutions. We discuss principles, working details of all the four types of solutions and then
crtically evaluate each of them by discussing their weaknesses. All SDN based solutions are
evaluated for various performance metrics that are critical for deployment in the cloud data
centers e.g. support of maximum number of concurrent senders, comparison with non-SDN
solutions, calculation of delay at the controller etc. Future research directions are also
discussed that outline promising investigation areas. We note that few surveys [4][5] have
been carried out in the existing literature regarding the TCP incast issue. However, these
surveys [4][5] discuss only non-SDN based solutions for TCP Incast issue. To the best of
author’s knowledge, there is no survey in the existing literature that classifies and critically
evaluates various SDN based solutions to the Incast issue.

The main contributions of this work are (i) To categorise various SDN based solutions
proposed in the existing literature to mitigate the TCP Incast issue. (ii) To discuss working
principles and details of various SDN based solutions proposed in the existing literature to
mitigate the TCP Incast issue. (iii) To critically evaluate various categories of SDN based
solutions proposed in the existing literature to mitigate the TCP Incast issue. (iv) To compare
different SDN based solutions to mitigate Incast issue based on various perfromance metrics.
(v) To propose future research directions that can be explored as a source of motivation
towards development and deployment of new SDN based solutions for the TCP Incast issue.

The rest of this survey is organized as follows. In section 2, TCP Incast issue and previous
surveys carried out regarding TCP Incast issue are discussed. SDN is briefly discussed in
section 3. In section 4, four types of SDN based solutions are discussed and critically
evaluated. In section 5, comparison of various SDN based solutions in terms of different
performance metrics is carried out and future research directions are proposed. Finally,
conclusion of the survey is provided in section 6.

2. Background and Related Work

 The cloud data centers today consist of large number of traffic flows with different
characteristics and requirements. The traffic inside the cloud data center includes short lived,
delay sensitive mice flows (e.g. traffic from large scale web applications, distributed fie
storage etc) and long lived, delay insensitive, bandwidth sensitive elephant flows (e.g. traffic
from backups and VM migration etc) [3]. Mice flows are generated inside the cloud data
centers because of applications that consist of many-to-one communication pattern e.g. large
scale web applications, distributed fie storage (e.g. Hadoop Distributed File System (HDFS)),
data procesing applications (e.g. MapReduce) [3][17][18]. In all these applications, the query
is broken down into smaller queries by the aggregator and are sent to worker nodes. The
worker nodes are connected to a shallow buffer switch (mostly 3-4 MB memory [19]) which
is in turn connected to the aggregator. The aggregator receives all the replies from workers
and then combines them into final result. However, sending of infromation by worker nodes
to aggregator creates a synchronized many-to-one communication pattern that quickly fills
up the buffer at the switch which also has traffic from elephant flows passing through it. This
exhaustion of buffer at the switch causes packet loss [3][4][5]. Fast retranmission phase of
TCP, that requires sending Tripple duplicate ACKs, also does not trigger due to lack of
subsequent packets arriving at the sender. Consequently, TCP at the sender waits for the
minimum RTO timer of TCP to expire before loss packets can be retransmitted. RTO timer

 5182 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

of TCP is generally set to 200ms in most operating systems [3][19]. However, this value is
suitable for WAN links but not for data centers where RTTs are in the order of microseconds
[3][17][18]. This delay leads to underutilization of the network and throughput collapse
(called as TCP Incast throughput collapse) which leads to long Flow Completion Time (FCT)
for mice flows. The increase in FCT makes the mice flows to miss their deadlines and
consequently are unacceptable to the aggregator. This results in bad response quality
[3][4][5][9][20]. Studies [19][20][21] suggest that this delay caused by Incast issue can
severely impact the revenue of the cloud operator e.g. every 100ms of latency cost Amazon 1%
in sales [21], similarly, extra 0.5 seconds in search page generation time dropped the traffic
of Google by 20% [21]. The incast scenario is shown in Fig. 1 [3][4][6].

Fig. 1. TCP Incast Scenario.

Some studies [4][5][22][23][24][25] in the current literature have carried out a survey to
classify and analyze various non-SDN based solutions to mitigate the Incast issue. In [4]
authors categorized non-SDN based solutions from the aspect of different layers of the
TCP/IP model i.e. solutions based on link layer, transport layer and application layer.
However, authors in [4] do not provide any future research directions in this area. A survey
on various issues regarding transport control in data center networks is carried out in [5].
Authors discussed the TCP Incast issue and provided a survey of various non-SDN based
solutions to mitigate this issue. In [5], authors classified the non-SDN based solutions in
three categories i.e. revising TCP parameters, replacing TCP with other protocols and
solving Incast at other layers of the TCP/IP model. Authors briefly proposed and explained
few future research directions in this area e.g. to design a lossless transport protocol to
eliminate timeouts. Similarly, authors in [22][23] discussed and critically evaluated various
non-SDN solutions (e.g. DCTCP etc.) to mitigate the Incast issue in cloud data centers. No
future research directions are presented in [22], however, authors in [23] discussed future
research directions and proposed the use of SDN in cloud data centers to mitigate the Incast
issue. In [23], authors suggested that SDN can be used to tune different TCP parameters in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5183

real-time with respect to the current network state and prevent buffers from queuing up too
much data. However, no survey of SDN based solutions to mitigate the Incast issue is carried
out in [23]. In [24], a survey on various issues related to network resource management in
cloud data centers is carried out. Authors have also briefly explained various solutions to
mitigate these issues. The use of SDN to mitigate the Incast issue in cloud data centers is
presented in [24]. Authors explained that SDN controller can be used to dynamically update
various TCP parameters (e.g. minimum RTO) and this can help in the mitigation of the
Incast issue. A survey of existing transport layer solutions proposed for mitigating the TCP
Incast issue is also carried out in [25]. In [25], various solutions to TCP Incast (e.g. DCTCP,
ICTCP etc.) issue are critically evaluated using different criteria i.e. modifications to the
TCP stack, support from the switch, congestion control algorithm etc.
It is noted that no study exists in the current literature that has carried out a detailed survey
of various SDN based solutions that have been proposed in the last few years to mitigate the
Incast issue. This study aims to fill in this research gap by categorizing and critically
evaluating various SDN based solutions. Another novelty of this work is to compare
different SDN based solutions in terms of various performance metrics and propose future
research directions.

3. Software-Defined Networking (SDN)
SDN is a new approach to computer networks that differs from traditional networking due to
the fact that it separates the data and control planes [12][13]. Data plane deals with the logic
and tables that help in the forwarding of incoming packets based on characteristics like IP
address, Virtual Local Area Networks Identification (VLAN ID) etc. Control plane deals
with the protocols, logic and algorithms that are used to program the data plane. In SDN,
unlike traditional networks, the control plane is not present on the devices but is moved to a
centralized controller. The separation of the control plane and the data plane is
realized by means of a well-defined programming interface between the switches and
the controller. The controller exercises direct control over the state in the data-plane
elements (e.g. switches etc.) via this well-defined Application Programming Interface (API).
The most notable example of such an API is OpenFlow. An OpenFlow switch has one or
more tables (called as flow table) of packet-handling rules. Each rule matches a subset of the
traffic and performs certain actions (e.g. dropping, forwarding etc.) on the traffic. SDN was
developed to facilitate innovation and enable simple programmatic control of the
network data-path. The separation of the forwarding hardware from the control logic allows
easier deployment of new protocols and applications, straightforward network visualization
and management [12][13]. SDN based solutions to mitigate the Incast issue in cloud data
centers are discussed in the next section.

4. Existing SDN based Solutions
SDN based solutions to mitigate Incast have attracted a lot of attention in the last few years
because of the popularity and growth of infrastructure capable of supporting SDN in cloud
data centers. In this section, working details of various SDN based solutions are provided.
An important feature of our work is to critically evaluate these solutions and highlight the
issues in them. We divide the various SDN based solutions discussed in the literature into
four broad categories, which are: TCP receive window based solutions, Tuning TCP
parameters based solutions, Quick recovery based solutions and Application layer based

 5184 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

solutions. This classification is shown in Fig. 2.

 Fig. 2. Classification of SDN based Solutions for Incast Issue

4.1 TCP Receive Window Based Solutions

The key idea of these solutions is to take advantage of the centralized architecture of SDN
and use the controller and SDN switch to calculate new sending rate for the senders in the
presence of congestion. This new sending rate is added to the receive window field of the
TCP ACK header and is sent to the senders to throttle the sending rate. This adjustment in
sending rate prevents switch buffers to overflow. The solutions in this category need either
the SDN switch or some other entity e.g. the hypervisor to modify the TCP packet. These
solutions are discussed below;

4.1.1 Software-Define Network Based TCP (SDTCP)

SDN based TCP (SDTCP) is presented in [6][26] to mitigate the TCP Incast issue. On
detecting congestion, this mechanism reduces the sending rate of elephant flows so that mice
flows can be accommodated and packet loss can be avoided. The congestion is detected
when the queue length of the SDN switch is above the certain threshold and at this instance,
the SDN switch sends a congestion notification message to the controller. This notification
message depending on the congestion level at the switch can be of three types i.e. low
congestion, medium congestion and high congestion. The controller has a flow selection
module that has all the details of elephant flows and mice flows. The controller selects all the
elephant flows and estimates their current bandwidth. It then reduces the sending rate of
these elephant flows depending on the network congestion level as indicated by the SDN
switch. For example, the sending rate (awnd) of elephant flows determined by the controller
on receipt of medium level congestion notification from the switch is given as:

Where G is the number of elephant flows and Wswnd is the capacity of bottleneck link that is
equally shared by each flow. Wswnd is given as:

max(,1), ()
2
swnd

j
Wawnd MSS j G= ∈

SDN Based Solutions for Incast
Issue

TCP Receive
Windows Based

Solutions

Tuning TCP
Parameters Based

Solutions

Quick Recovery
Based Solutions

Application Layer
Based Solutions

(1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5185

Where C is the capacity of bottleneck link, Q (t) is the queue length at time t and N is the
number of elephant and mice flows. The controller then updates the flow table entries at the
SDN switch and a new flow table entry called as advertised window (awnd) is added which
represents the new calculated sending rate. When the TCP ACK packet arriving at the SDN
switch matches the awnd entries, the awnd value of the ACK packet is updated with this new
value. The awnd is determined by:

where awndr = value of awnd of TCP ACK packet arriving at the switch
awndi = value of awnd in the flow table for the i-th elephant flow

After receiving the modified ACK packet, the sender adjusts its sending window (swnd)
based on the following equation

where cwnd is the congestion window. Like in basic TCP, swnd is normally defined by cwnd.
This means that SDTCP temporarily reduces the sending rate of all the elephant flows and in
this way the queue at the switch is not filled up to cause packet loss for both elephant and
mice flows. Authors in [6][26] carry out experiments to test SDTCP and compare it with
TCP and DCTCP. Experiments are carried out by using many-to-one communication
topology with a TCP RTO of 30ms. The experimental results show that SDTCP provides
high throughput to mice flows and does not starve elephant flows. It also provides lower
FCT than both TCP and DCTCP. Experimental results presented in [26] are based on 40
senders and 40 receivers with 1Gbps throughput. Another work [27] compares SDTCP with
TCP Reno [28] and TCP Cubic [29] in a smaller network of 10 senders and 10 receivers with
lesser capacity of 250Mbps. Authors in [27] found that with smaller network size and lesser
capacity, TCP Reno and TCP Cubic provide similar throughput performance as SDTCP.

4.1.2 SDN based Incast Congestion Control via Queue-based Monitoring

The motivation behind the SDN based Incast Congestion Control via Queue-based
Monitoring (SICCQ) as presented in [30][31] is to reduce the effect of Incast issue in data
centers while simultaneously not effecting the throughput of elephant flows. Another
motivation behind SICC is not to modify the basic TCP mechanism on sender/ receiver and
the SDN switch. The controller in SICC keeps track of TCP SYN packets of all connections
(source destination pair) and a weighted moving average of buffers occupancy at the SDN
switch. The controller also keeps track of the new minimum number of extra bytes added by
any new connection. If the new connection added can result in buffer overflow then it sends
an Incast-on message to the hypervisor of the senders. However, if more space is available in
the buffer (more than 20% of buffer size) it then sends an Incast-off message. The hypervisor
keeps track of TCP ACK packets and if Incast-on flag is turned on, it then rewrites the
receive window value in the ACK packets to 1MSS. On receiving Incast-off message, the
controller turns off the Incast flag. The setting of receive window to 1MSS reduces the

. ()
swnd

C RTT Q tW
N
+

=

' min(,), ()i i rawnd awnd awnd i G= ∈

min(,)swnd cwnd awnd=

(2)

 (3)

(4)

 5186 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

sending rate of all senders. This prevents packet loss and TCP retransmission timeouts for
mice flows (especially at the start of connection when recovery due to packet loss is not
possible because of unavailability of Three Duplicate ACKs), therefore, mitigating TCP
Incast issue. Incast flag is turned off when buffer space is available and then all the flows
restore their data rate by resuming their existing congestion window values. Simulations and
experiments carried out in [30][31] show that SICCQ reduces the Incast by improving FCT
of mice flows and at the same time its impact on throughput of elephant flows is minimal.

The main contribution of SICCQ is that it does not modify the basic TCP mechanism and
the SDN switches that are used in the data center today. However, it does require the
hypervisor to be modified to rewrite the ACK packets and keep track of the Incast flag.
Moreover, the results presented in [30][31], show that the performance of SICCQ is
comparable to DCTCP but worse than RWNDQ. For example, for a single-rooted topology
(with elephant to mice flow ratio of 1:3), SICCQ improves the completion time of mice
flows on average; it has less variation in response times and its performance is similar to
DCTCP. However, it does not perform better than RWNDQ.

4.1.3 Scalable Congestion Control Protocol (SCCP)

The main goal of SCCP [14] is to avoid packet loss via buffer flow even in the presence of
large number of flows in the cloud data centers. SCCP keeps track of packets coming in and
going out of each port of the SDN switch. For each packet leaving the port, it keeps track of
the number of TCP flows (by detecting TCP SYN/FIN flags). For each packet entering the
port, it computes the Fair-Share (FS) and updates the value of the TCP receive window
field in the header only if the new calculated value is less than the old value of receive
window. FS is defined as the size of each flow that the switch port can support. FS is
calculated by taking into account the Bandwidth Delay Product (BDP) of the port and the
number of flows passing through the port. FS on ith switch port is given as:

where Ni is the number of flows passing through the ith switch port. BDPi is given as:

where value of CommonRTT is given as 300µs or 400µs [14]. The receive
window value in TCP header is updated by each switch in the end-to-end path between the
sender and the receiver. In this way, the sender comes to know about the FS of the bottleneck
port and it can update the sending rate accordingly. The bottleneck port may change with
traffic dynamically entering the network. The FS is updated accordingly and reported to the
senders. This mitigates the Incast issue as packet loss due to the buffer overflow in the
bottleneck port is avoided. SCCP has shown significant performance gains than both TCP
New Reno and DCTCP. In a single root scenario, it achieve very low FCT (8.4ms) for mice
flows even in the presence of 400 workers. In a multiple root scenario, where 90 workers are
attached to each of the five roots, it again outperforms both TCP New Reno and DCTCP.
Another advantage of SCCP is the fact that it does not maintain per flow information (which
can cause significant overhead) but it just keeps record of number of flows (N) passing
through each switch port. SCCP, however, does require the SDN switch to do extra
processing by checking for the receive window value and then update it with new value, if

i
i

i

BDPFS
N

=

i iBDP LinkCapacity CommonRTT= ×

(5)

(6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5187

required.

4.1.4 SED: An SDN based Explicit Deadline Aware TCP

SED [19] divides the flows into two types i.e. deadline flows and non-deadline flows. Non-
deadline flows are given a base sending rate of 1MSS. However, spare bandwidth is given to
as many deadline flows as possible. In SED, the SDN switch keeps track of its buffer and
sends a congestion notification message to the controller if the buffer size is above a certain
threshold. The controller creates a Global Information Flow Table (GIF). This table holds
records of many flows like size and identification number of flow, deadline, remaining flow
size etc. GIF table is sorted according to the deadline of the flow, flows with earliest
deadlines comes first in the table. At the heart of SED is a Receive window determination
algorithm that is used by the controller. The value of receive window as determined by this
algorithm is placed in the TCP ACK header which is later on used by the TCP senders. The
receive window determination algorithm keeps track of total window Twin (which is the sum
of all sending window sizes of all TCP flows that are passing through the switch at a certain
time). Twin is given as:

where Wi (t) is the window size of TCP flow i at time t.

Another parameter taken into account by this algorithm is the window allocation to a
deadline flow. This window allocation is determined as follows:

Where d is the size of the remaining data that is to be transmitted, t is the remaining time
until deadline and RTTavg is the average RTT of all flows. The algorithm also keeps track of
the total allocation (Talloc) which is incremented after every allocation (both for deadline and
non-deadline flows). The algorithm first assigns base sending rate of 1MSS to all the non-
deadline flows. After that, if Talloc is less than Twin, it allocates window to all the deadline
flows according to equation 8. This ensures that all flows meet their deadlines. A flow is
dropped if its deadline is missed. If Talloc is less than Twin after the initial allocation, then
reallocation to non-deadline flows is performed in a fair share manner. SED is compared
with TCP, DCTCP and D2TCP in [19]. Experiments carried out in [19] with many-to-one
communication pattern with varying number of deadline and non-deadline flows show that
SED provides high goodput and low FCT than TCP, DCTCP and D2TCP. However,
goodput of SED decreases sharply when number of concurrent senders are more than 40.
SED also requires the controller to maintain GIF table, which can cause overhead in the
presence of large number of flows.

4.1.5 Issues with TCP Receive Window Based Solutions

All the TCP receive window based solutions either require switch or hypervisor to check for
the receive window value in the header of the TCP ACK packet and then update it with new
value, if required. This requires modification to existing switches and hypervisors. Moreover,
all the solutions, except SCCP, have to maintain per flow information about different flows

()win i
i N

T W t
ε

= ∑

avg
dWindowAlloc RTT
t

= × (8)

(7)

 5188 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

present in the network. This can incur significant overhead in the presence of large number
of flows. To implement these solutions, the widely used OpenFlow protocol [12][13] also
has to be extended to enable the controller and switch to perform various actions e.g.
congestion notification trigger sent by the switch to the controller etc. The issues, advantages
and working details of these solutions are summarized in Table 1. Different software
specifications (e.g. SDN controller etc.) used by authors to carry out performance analysis of
SDTCP [6][26], SICCQ [30][31], SCCP [14] and SED [19] are also mentioned in Table 1.

4.2 Solutions based on Tuning TCP Parameters

Other SDN based solutions discussed in the literature take advantage of the fact that SDN
controller can collect many network statistics to align TCP parameters according to the
particular data center environment. Some solutions only tune initial TCP parameters [32]
while some tune various parameters [15][33]. The fine-tuning of TCP parameters avoids
buffer overflow and packet loss at SDN switch. These solutions are discussed below;

4.2.1 Omniscient TCP (OTCP)

Omniscient TCP (OTCP) [15] is a SDN based approach to mitigate the Incast issue by tuning
various TCP parameters. OTCP takes into account the global view of the network to collect
different network parameters e.g. latency, throughput, buffer size of SDN switch. OTCP
measures the end-to-end latency using the OpenFlow Discovery Protocol (OFDP). The
buffer size of SDN switch (in bytes) is calculated by the controller by sending an
ofp_queue_get_config packet. These measurements of various network parameters are then
used to calculate different TCP specific parameters like initial value of RTO (RTOmin),
maximum value of RTO (RTOmax), initial value of congestion window (CWNDinit) and
maximum value of congestion window (CWNDmax). CWNDmax is calculated by taking into
account the BDP of the route between two end systems (S1, S2). CWNDmax is given as:

 (9)
where BDP is calculated by:

 (10)

RTT is the round trip time and TR is the sending rate between two hosts S1 and S2. Similarly,
CWNDinit is calculated by dividing the CWNDmax with the number of active flows on the link.
CWNDinit is given as:

 (11)

The value of β in equation 11 can be calculated by the controller by sending
ofp_flow_stats_request to the SDN switch. The end systems get all the calculated TCP
parameters by connecting to the controller. In this way, OTCP aligns the TCP congestion
control parameters with the data center environment where it is used. It mitigates Incast by
tuning the congestion window to the BDP of the network and this prevents packet loss at the
bottleneck switch. OTCP has low FCT compared to TCP when used in a partition/aggregate
work flow. For mice flows, it provides 12 times improvement than TCP. However,
experiments carried out in [15] also show that in the presence of elephant flows, OTCP

max 1 2(1 2) S SCWND S S BDP −>− > =

1 2 1 2.S S S S RBDP RTT T−> −>=

maxmin(1,)init
CWNDCWND

β
=

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5189

suffers from queue build up and it cannot totally mitigate Incast issue. Consequently, authors
have to use it with DCTCP in order to avoid the queue buildup, which ultimately leads to
decrease in FCT.

Table 1. Summary of TCP Receive Window Based Solutions

Solution Working
Details

Congestion
Control

Issues Advantages Software
Specifications

SDTCP
[6][26]

Controller keeps
track of the
bandwidth of all
elephant flows
and uses switch
to modify
advertised
window (awnd)
in the TCP ACK
packets.

Sending rate
depends on the
congestion level
and is calculated
by the controller.

Overhead is
caused by the
maintenance
of Per-flow
information.

Performs
better than
TCP and
DCTCP in
larger
networks
with high
data rate.

Mininet,
OpenFlow,
FloodLight
Controller.

SICCQ
 [30][31]

Incast-on
message is sent
to the
hypervisor by
the controller of
the senders to
indicate
congestion.

The hypervisor
keeps track of
TCP ACK
packets and if
Incast-on flag is
turned on, it then
rewrites the
receive window
value in the
ACK packets to
1MSS.

Hypervisor
needs to be
modified to
rewrite the
ACK packets.

No
modification
is needed to
the TCP and
the switches.
Low FCT
than TCP
and DCTCP.

Ryu
Controller,
OpenFlow.

SCCP
 [14]

Computes the
Fair-Share (FS)
for each
incoming packet
and then update
the value of the
TCP receive
window field in
the header.

FS is calculated
by diving the
BDP of the port
with the number
of flows passing
through that
port. All
switches in the
end-to-end path
calculate and
update FS.

TCP ACK
packets have
to be modified
by the SDN
switch.

No per flow
information
needs to be
maintained.

Network
Simulator-3
(NS-3),
OpenFlow,
Open vSwitch
controller

SED
 [19]

Non-deadline
flows are given
a base sending
rate of 1MSS.
However, spare
bandwidth is
given to as
many deadline
flows as
possible.

The deadline
flows are
allocated
window by
taking into
account the size
of the remaining
data that is to be
transmitted,
remaining time
until deadline
and average
RTT of all
flows.

Overhead to
maintain per
flow
information in
the Global
Information
Flow (GIF)
table.

Performs
better than
TCP,
DCTCP and
D2TCP.

Mininet,
OpenFlow,
FloodLight
Controller.

 5190 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

4.2.2 OpenTCP

Authors in [33] propose OpenTCP which is a TCP adaptation framework that is specially
designed to operate in data centers that support SDN. It allows network administrators to
tune different TCP parameters according to their policies e.g. congestion control policy. It
also allows network administrators to choose between various TCP variants to use in their
data center e.g. DCTCP [3], TCP Cubic [29]. In OpenTCP an application called as ‘Oracle’
runs at the controller. This application collects information about the network from the SDN
switch. The ‘Oracle’ also takes into account the policies defined by the administrator before
sending the information to the end hosts via SDN switch. End hosts then either update TCP
parameters or choose a variant of TCP to use. Authors in [33] deploy OpenTCP in a real data
center as a proof of concept and results show that in the presence of mice flows, OpenTCP
can provide better FCT (64% shorter) and less packet drops than TCP when used in a many-
to-one communication topology. Also, OpenTCP can be used to take advantage of any TCP
variant e.g. DCTCP. OpenTCP, however, is only a framework to reduce Incast and more
work on various aspects are needed e.g. designing congestion control policy etc.

4.2.3 Tuning Initial TCP Parameters

Another technique proposed in [32] to mitigate Incast problem is to tune only the initial
values of TCP parameters i.e. initial value of RTO (RTOmin) and initial value of congestion
window (CWNDinit). In this approach, the controller calculates the RTOmin, CWNDinit and
then sends them to all the senders. The controller calculates RTOmin by taking into account
the propagation delays and time required by each buffer to offload. RTOmin is given as:

Where L is the propagation delay, B is the buffer size of switch and T is the throughput.
Similarly, CWNDinit is matched to the BDP of the network and is given as:

Where N is the number of active TCP flows. Experiments carried out in [32] show that
tuning RTOmin and CWNDinit according to the conditions of the data centre environment
provides low FCT than using the default values. The results presented in [32] reveal that for
mice flows, TCP with optimized RTOmin and CWNDinit values to 14ms and 1 segment,
respectively, provide eight times less FCT than with default values of 200ms and 10
segments for RTOmin and CWNDinit, respectively. However, further performance evaluation
of this mechanism in the presence of elephant flows is needed.

4.2.4 Issues with Solutions based on Tuning TCP Parameters

The benefit of tuning TCP parameters based solutions is that they do not make any
modification to the basic TCP mechanism. However, in all these solutions the controller has
to collect various network statistics to calculate different network parameters. The controller
also has to send the information to all the senders. This requires extra processing on the

min
1 1

n n
i

i
i i i

BRTO L
T= =

= +∑ ∑

1
min

n
i

init i R i
ii

TCWND L
Nε

=

= = ×∑

(12)

(13)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5191

controller, which can affect its performance in the presence of large number of flows. The
wastage of bandwidth is also an issue when controller sends information to all the senders.
Another aspect that needs further investigation is determination of the time it takes for the
controller to collect, compute and share the TCP parameters to all the senders. This latency
can affect the FCT. Moreover, collecting various network parameters for each TCP flow in
these solutions require the switch to maintain a flow table entry for every flow so that TCP
statistics are reported to the controller on request. This may not be suitable for SDN switches
that have fewer table entries and cannot store information related to all the flows. The issues,
advantages and working details of these solutions are summarized in Table 2. Different
software specifications (e.g. SDN controller etc.) used by authors to carry out performance
analysis of OTCP [15], OpenTCP [33] and Tuning Initial TCP Parameters [32] are also
mentioned in Table 2.

4.3 Quick Recovery based Solutions

In the presence of packet loss, TCP sender waits for the arrival of three duplicate ACKs or
the timer to expire before it can retransmit the lost packets. This increases the FCT. In Quick
recovery based solutions, lost packets are retransmitted quickly without leaving the
communication link idle for a long time. This results in higher throughput and low FCT.
More details on these solutions are given below;

4.3.1 Retransmission-enhanced SED (RSED)

RSED is an extension of SED that is discussed in section 4.1.4. The basic idea behind RSED
as mentioned by authors in [19] is that packet loss ultimately occurs because the number of
flows are very large in a typical data center. Therefore, authors propose that the TCP sender,
in the event of loss packets, should retransmit quickly instead of waiting for the timer to
expire. In the event of packet loss, the SDN switch encapsulates the dropped packet in an
OpenFlow Packet-In message and sends it to the controller. The controller has a GIF table
(as mentioned in section 4.1.4) that holds records of many flows like size and identification
number of flow, deadline, remaining flow size etc. The controller extracts the dropped
packet from the Packet-In message and then sends Triple Duplicate ACKs to the sender
(source) of the dropped packet. The switch forwards the Triple Duplicate ACKs to the sender
based on the entry in its routing table. The sender on receiving the Triple Duplicate ACKs
retransmits quickly without waiting for the timer to expire. RSED is compared with SED,
TCP, DCTCP and D2TCP in [19]. Experiments carried out in [19] with many-to-one
communication pattern (six senders transmitting flows to one receiver) show that RSED
performs better than SED, TCP, DCTCP and D2TCP. For example, it provides better
goodput and low FCT than SED, TCP, DCTCP and D2TCP even with number of flows equal
to 100. However, the issue with RSED is that in the presence of heavy congestion on the
switch the Triple Duplicate ACKs sent by the controller may also get lost. The sender will
then retransmit only when the timer expires.

 5192 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

Table 2. Summary of Tuning TCP Parameters Based Solutions

4.3.2 Explicit Packet Drop Notification (PDN)

In Explicit PDN technique [34], SDN switch explicitly sends the details of the dropped
packet to the sender so that it is retransmitted. When the packet loss occurs in the switch
because of congestion, the switch removes few important fields from the packet that are
needed to recover the lost data. These important fields are source and destination IP
addresses, source and destination port numbers, sequence numbers and length of payload.
This data of size 20 bytes is called as Packet Drop Notification Data (PDND). PDND is
stored locally by the switch in a separate queue called as notification queue. SDN
infrastructure (controller and switches) enables the PDND to reach the sender whose data
packet was lost. When the TCP flow in the SDN switches are setup by the controller, all the
SDN switches in the network are then also required to create a reverse path so that the
PDND reaches the correct sender. PDND is attached to the frame header when any frame to

Solution Working
Details

Congestion
Control

Issues Advantages Software
Specifications

OTCP
[15]

Fine-tunes
various TCP
parameters
e.g. latency,
throughput,
buffer size of
switch.

Tunes the
congestion
window to
the BDP of
the route
between two
systems to
prevent
packet loss.

Suffers from
queue build up
in the presence
of elephant
flows.

Twelve times
improvement
in FCT than
TCP for mice
flows. It can
also be used
with DCTCP
to further
reduce the
FCT.

Mininet,
OpenFlow,
Go Controller
(Specially
designed to
manage Open
vSwitch
software
switches).

OpenTCP
[33]

Different TCP
parameters are
tuned
according to
policies and
gives choice
between
various TCP
variants to use
in the data
center.

Defining
congestion
control
policies (e.g.
which
network
parameters
to collect
etc.) are left
on the
network
operator.

Only a
framework to
reduce Incast.
More work is
needed on
various
aspects e.g.
designing
congestion
control policy
etc.

Performs
better than
TCP in terms
of FCT.

No specific
controller is
mentioned.
Oracle
(application
running at the
controller).

Tuning
Initial
TCP

Parameters
[32]

Tunes only
minimum
retransmission
timer and
initial
congestion
window.

Initial
Congestion
window
matches the
BDP of the
network to
prevent
packet loss.

Extra
processing at
the controller.
More
investigation
in the presence
of elephant
flows is
needed.

Eight times
lower FCT
than non-
tuned
retransmission
timer and non-
tuned initial
congestion
window.

Network
Simulator-3
(NS-3). No
specific
controller is
mentioned.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5193

the next hop that is destined to the same source traverses the switch. In this way, PDND is
carried along the path to the original sender of data. The sender on receiving the PDND
quickly retransmits the actual packet that was lost. Simulations carried out in [34] show that
TCP with PDN provides low FCT even in the presence of large number of senders. The
results in [34] show that TCP suffers from packet loss and timeouts (with a delay of 200ms)
when number of senders are more than 72. However, in the same scenario, TCP with PDN
retransmits quickly with no timeouts and therefore, results in low FCT.

4.3.3 Issues with Quick Recovery based Solutions

Quick recovery based solutions require the SDN switch to keep track of lost packets. This is
an overhead for SDN switch and is impractical with large packet loss, which may occur with
large number of senders. Both RSED and Explicit PDN mechanisms require the modern
SDN switches to be modified. In RSED, SDN switches have to send message to controller
when packet loss occurs; this feature is not supported by modern SDN switches. Switches
also not support modifying frame header (addition of 20 bytes) and maintaining separate
queues for PDND in Explicit PDN mechanism. In RSED, Triple Duplicate ACKs that are
sent to the sender results in extra processing by the controller that is already loaded with
other tasks to perform in the network.

Both RSED and Explicit PDN presented in [19] and [34], do not determine the total delay it
takes for the sender to retransmit when a packet loss occurs. In RSED, this delay consists of
notifying the controller of packet loss by switch, generation of Triple Duplicate ACKs by the
controller and arrival of Triple Duplicate ACKs at the sender. This delay needs further
investigation because if this delay is larger than the RTO timer at the sender then there is no
advantage of sending Triple Duplicate ACKs. Similarly, in Explicit PDN mechanism this
delay consists of storing PDND in a separate queue, keeping track of frames heading to the
direction of the sender, adding twenty bytes to frame header and arrival of PDND to the
sender. This delay also needs further study because if this delay is larger than the RTO timer
at the sender then there is no advantage of sending Explicit PDN. The issues, advantages,
and working details of RSED [19] and Explicit PDN [34] are summarized in Table 3.
Different software specifications (e.g. SDN controller etc.) used by authors to carry out
performance analysis of RSED [19] and Explicit PDN [34] are also mentioned in Table 3.

4.4 Application Layer based Solutions

Application layer based solutions either restrict the number of senders who want to send data
at the same time [35] or modify the existing SDN architecture by running an application on
the controller that helps in decoupling the policy resolution layer from the policy
enforcement layer in network service appliances e.g. Firewalls [36]. These solutions do not
modify the TCP congestion control mechanism. The details of these solutions are given
below;

 5194 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

4.4.1 Send in Group (SIG)

Send in Group (SIG) [35] avoids packet loss and buffer overflow at the switch by not
allowing all the senders to transmit data at the same time. It divides the senders into smaller
groups and then let the each group transmit one after the other. SDN controller creates the
flow table and sends it to the SDN switch, which forwards it to all the senders. When
multiple senders want to send data to one receiver simultaneously, the controller invokes the
SIG mechanism. It calculates the number of groups Ng of the senders so that the Incast issue
is mitigated.

Table 3. Summary of Quick Recovery Based Solutions

If number of senders that simultaneously want to send data to same receiver is N, Ng is then
given as:

Where K is adapted from [8], where authors predict the start of Incast in terms of maximum
concurrent senders with a specific data block size. Therefore, K is the number of concurrent
senders where the network goodput is maximum and any further increase in this number
causes the goodput collapse. The value of K as calculated by [8] varies with data block size.
The values of K are 13, 7 and 4 for 16KB, 32KB and 64KB data blocks, respectively. The
controller chooses K based on number of concurrent senders and data block size. It calculates
Ng and then give instructions to the SDN switch. The SDN switch then instructs each sender
group and they take turns to send data. SIG avoids packet loss and simulations carried out in
[35] show that with 32KB and 64KB data block, TCP throughput collapse did not occur
when number of senders are increased from 13 and 7, respectively. The TCP throughput was

g
NN
K
 =   

Solution Working
Details

Congestion
Control

Issues Advantages Software
Specifications

RSED
 [19]

Controller sends a
Triple Duplicate
ACK to the TCP
sender so that it
can retransmit
quickly.

Same as
SED.

Generating
Triple
Duplicate
ACK is
extra load
on the
controller.

RSED provides
better goodput
and low FCT
than SED, TCP,
DCTCP and
D2TCP.

Mininet,
OpenFlow,
FloodLight
Controller.

Explicit
PDN

 [34]

Switch sends
specific details of
packet that was
lost to the sender
so that it can be
retransmitted
quickly.

Same as
TCP.

Modern
switches do
not support
modifying
Frame
header.

TCP with
Explicit PDN
provides low
FCT than TCP
without Explicit
PDN in the
presence of
large number of
senders.

Network
Simulator-3
(NS-3). No
specific
controller is
mentioned.

(14)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5195

also very stable with no fluctuations (because of no packet loss). However, authors in [35]
have only considered throughput as a performance metric of SIG. FCT is another important
metric that should be discussed and investigated. Moreover, authors carry out simulations for
only 30 concurrent senders, which is not a large number. Performance of SIG should be
investigated with large number of concurrent senders. SIG is theoretically a good way to
prevent packet loss and consequently avoids Incast, however, more research needs to be
conducted to prove its efficiency.

4.4.2 EnforSDN

EnforSDN [36] is a novel way of using network service appliances e.g Firewalls, Intrusion
Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) etc. into an environment
that uses SDN. In SDN, policy configuration i.e. control decisions are made by a central
controller based on the global knowledge and it is delivered to programmable switches that
implement policy resolution and enforcement. However, this approach leads to many issues
[36] e.g. latency due to processing time at the service appliance, network propagation delay
on path towards switches and queuing delay in the forwarding devices that have large traffic
passing through them. EnforSDN differs from SDN due to the fact that it decouples the
policy resolution layer from the policy enforcement layer in network service appliances. The
decoupling of policy resolution and policy enforcement removes the above mentioned
shortcomings in SDN resulting in decrease of appliance load and reduction of the network
load over the links surrounding the appliances which ultimately leads to mitigation of the
Incast issue [36]. An application called EnforSDN manager runs on top of the controller that
connects with policy resolution instances running on appliances. This communication
channel between EnforSDN manager and policy resolution instance enables the appliance to
inform the EnforSDN manager of its policy (which could be blocking, logging, modifying or
rate limiting the flow) and also request it to enforce this policy. The EnforSDN manager then
configures one or more switches to enforce the policy. The appliance can decide which
policy to enforce locally and which policy to be enforced remotely. Results presented in [36]
show that in a many-to-one communication pattern, EnforSDN reduces the load on the link
towards the firewall and mitigates the Incast issue. EnforSDN enabled firewall provides
400%-500% improvement in throughput than regular firewall. However, authors in [36] have
only used firewall as an example to implement EnforSDN. More research is needed to
extend this mechanism to incorporate other network appliances like IDSs, IPSs etc.

4.4.3 Issues with Application Layer based Solutions

Both SIG [35] and EnforSDN [36] require extra processing at the controller. SIG requires
controller to calculate the value of Ng and then send it to the SDN switch. EnforSDN,
however, modifies the SDN architecture and it requires an added application (i.e. EnforSDN
manager) to run on the controller that communicates with the instances running on the
network service appliances. The issues, advantages and working details of these solutions are
summarized in Table 4. Different software specifications (e.g. SDN controller etc.) used by
authors to carry out performance analysis of SIG [35] and EnforSDN [36] are also
mentioned in Table 4.

 5196 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

5. Comparison of Different Solutions and Future Research Directions
In the last section, all SDN based solutions to mitigate TCP Incast issue are discussed and
various issues associated with these solutions are highlighted. However, it is also important
to compare different solutions proposed in the literature in terms of various performance
metrics.
These performance metrics help to determine the usefulness of any solution in terms of
deployment in cloud data centers. A comparison of different solutions in terms of various
performance metrics along with future research directions are discussed in this section.
Performance comparison of various solutions are summarized in Table 5.

Table 4. Summary of Application Layer Based Solutions

5.1 Maximum Number of Concurrent Senders

An important performance metric is the maximum number of concurrent senders supported
by a particular solution before throughput collapses because of the Incast issue. There can be
hundreds of concurrent senders inside the data centers that take part in many-to-one
communication work flow. In many-to-one communication pattern, increasing the number of
concurrent senders increases the onset of throughput collapse because of the Incast issue.
Therefore, it is an important metric to consider when evaluating any Incast solution. This
survey finds that solutions proposed in the literature do not support a large number of
senders, only SCCP [14] can support 400 simultaneous senders while OpenTCP [33] was

Solution Working
Details

Congestion
Control

Issues Advantages Software
Specifications

SIG
[35]

Divides the
senders into
smaller groups
and then let
each group
transmit one
after the other.

Controls
congestion by
not allowing
all senders to
transmit
simultaneously
.

Supports
only 30
concurrent
senders.
Extra
processing at
the
controller.

Higher
throughput
than TCP.

NOX
Controller,
OpenFlow.

EnforSDN
[36]

Decouples the
policy
resolution layer
from the policy
enforcement
layer in network
service
appliances.

Decoupling of
policy
resolution layer
from the policy
enforcement
layer reduces
the network
load over the
links
surrounding
the network
appliances.

SDN
architecture
needs to be
modified.
Implemented
only for
firewalls.

EnforSDN
enabled
firewall
provides
400%-500%
improvement
in throughput
than regular
firewall.

Mininet,
OpenFlow,
Open vSwitch
controller.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5197

implemented in a real data center with thousands of nodes but it is not clear how many
concurrent senders it can support. Most of the solutions support less number of concurrent
senders e.g. SED [19] and OTCP [15] can support 40 and 100 simultaneous senders,
respectively. Future research should be directed in designing solutions that can support large
number of concurrent senders.

5.2 Comparison with Non-SDN based Solutions

In order to gauge the performance of all the SDN based solutions, it is important to carry out
their performance comparison (in terms of throughput, FCT, number of concurrent senders
supported etc.) with other non-SDN based solutions. It is found that majority of the studies
have taken the performance of DCTCP [3] as a benchmark to compare the performance of
their solutions. However, DCTCP [3] suffers with many issues e.g. it shows poor scalability
and cannot cope with more than 35 concurrent senders [4][5]. Other solutions e.g. ICTCP [9]
and RWNDQ [11] have shown better performance than DCTCP [3]. Future research work
should carry out comparison with solutions other than DCTCP [3] so that the true advantage
of using SDN in cloud data centers can be highlighted.

5.3 Comparison with SDN based Solutions

It is interesting to note that none of the existing solutions discussed in section 4 have
compared their work with other SDN based solutions. As mentioned above, majority of the
solutions have compared their work with non-SDN based solutions (i.e. DCTCP [3]).
However, in future performance comparison with other SDN based solutions should also be
carried out.

5.4 Number of Mice and Elephant Flows

Another important performance metric is the number of mice and elephant flows considered
by the authors when they evaluate their respective solutions. Studies [3][17][37] suggest that
elephant and mice flows are in the ratio of 1:3 in a typical cloud data center. We consider
this ratio and evaluate various solutions. It is found that only [30][31] have considered this
ratio (with 126 mice flows and 42 elephant flows) when they evaluate the performance of
SICCQ. Most of the studies have either not considered elephant flows or have only
considered one elephant flow, which are not representatives of a typical cloud data center.
Future SDN based solutions to mitigate Incast issue should be evaluated by taking elephant
and mice flows in the ratio of 1:3.

5.5 Calculation of Delay at the Controller

Critical evaluation of all the four types of solutions in section 4 reveal that SDN controller
plays an important role in implementing any SDN based solution. It performs various tasks
to implement these solutions e.g. it runs congestion control algorithms in TCP receive
window based solutions, calculates various TCP parameters in Tuning TCP parameters
based solutions etc. All these tasks require extra processing by the controller and this can
affect its performance. It is therefore, important to calculate the time the controller takes to
perform various tasks in a particular SDN based solution. However, it can be noted from
Table 5 that only authors in [26] and [33] have calculated the delay at the controller for

 5198 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

SDTCP and OpenTCP, respectively. Rest of the solutions have not considered this important
performance metric. Future research in this area should consider calculating delay at the
controller in performing various tasks.

 5.6 Fairness between Mice and Elephant flows

Another important performance metric is the fairness between mice and elephant flows.
Elephant flows and mice flows co-exist in a typical cloud data center. However, a particular
solution may allocate more data rate to mice flows and this can starve the elephant flows in
the long run. It is therefore, important to determine whether this metric (fairness) is taken
into
account by various solutions discussed in section 4. It can be noted from Table 5 that few
solutions (e.g. SDTCP [6][26], SICCQ [30][31], SCCP [14] and OTCP [15]) have
considered this performance metric and results show all these four solutions provide fairness
in allocating data rate to mice and elephant flows. Most of the studies have ignored this
metric when evaluating their solutions. Future research in this area should also consider this
metric when evaluating the proposed solution.
Survey results clearly indicate that all the four types of solutions suffer from various issues
that make them impractical to be deployed in a cloud data center. From Table 5, it is also
noted that TCP receive window based solutions like SDTCP [6][26], SCCP [14], SICCQ
[30][31] and Tuning TCP based solution like OTCP [15], OpenTCP [33] have the potential
to be deployed in a real cloud data center as these solutions address most of the performance
metrics discussed above. However, all these solutions still need further development and
performance evaluation before they can be deployed in a cloud data center. The research
directions given in this section will enable future researchers to address the shortcomings in
the current SDN based solutions discussed in the literature. It will also help them to design
SDN based solutions to mitigate Incast issue by taking into account various performance
metrics that are required for deployment in cloud data centers.

6. Conclusion
In this survey, various SDN based solutions proposed in the existing literature to mitigate
the TCP Incast issue are classified into four types i.e. TCP receive window based solutions,
Tuning TCP parameters based solutions, Quick recovery based solutions and Application
layer based solutions. The working principles, advantages and issues associated with all the
solutions are discussed in detail. All the solutions are also critically evaluated and compared
in terms of various performance metrics that are important for deployment in cloud data
centres. It is noted that all the SDN based solutions suffer from various issues; and need
more development and performance evaluation before they can be deployed in cloud data
centres. Various research directions are also proposed in this survey that will enable future
researchers to propose better SDN based solutions to mitigate the Incast problem.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5199

Table 5. Comparison of Different SDN Based Solutions

Taxonomy
of SDN
Based

Solutions

Solution Maximum
Number

 of
Concurrent

Senders

Comparison
with

Non-SDN
 Solutions

Number
of

Mice and
Elephant

Flows

Delay at
the

Controller

Fairness
between
Various
Flows

TCP
Receive
Window

Based
Solutions

SDTCP
[6][26]

120 DCTCP 119 mice,1
elephant Yes Yes

SICCQ
[30][31] 145 DCTCP,

RWNDQ

126 mice,
42

elephant
No Yes

SCCP
[14] 400 DCTCP 400 mice,

1 elephant N/A Yes

SED
[19] 40 DCTCP,

D2TCP
5 mice, 1
elephant No No

Tuning TCP
Parameters

Based
Solutions

OTCP
 [15] 100 DCTCP

90 mice,
one

elephant
No Yes

OpenTCP
 [33]

Not Clearly
Mentioned
(3,864 total

nodes in
SciNet HPC
data center).

No

Mix of
both
(Not

Mentioned
clearly)

Yes No

Tuning
Initial
TCP

Parameters
 [32]

10 No

10 mice, 0
elephant

No No

Quick
Recovery

Based
Solutions

RSED
 [19] 100 DCTCP,

D2TCP
5 mice, 1
elephant No No

Explicit
PDN

 [34]
150 No

150 mice,
0 elephant No No

Application
Layer Based

Solutions

SIG
 [35] 30 No

30 mice, 0
elephant No No

EnforSDN
 [36] 32 No

 Mice and
Elephant
flows are
randomly
distributed

No No

 5200 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

References
[1] New AWS Region in France. Retrieved on May 5, 2018. Article (CrossRef Link)
[2] Farzad Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based

Technology,” International Journal of Machine Learning and Computing, vol. 2, no. 1, pp. 39,
2012. Article (CrossRef Link)

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta and Murari Sridharan, “Data Center TCP (DCTCP),” in Proc. of
ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp. 63-74, 2010.
Article (CrossRef Link)

[4] Yongmao Ren, Yu Zhao, Pei Liu, Ke Dou and Jun Li, “A Survey on TCP Incast in Data Center
Networks,” International Journal of Communication Systems, vol. 27, no. 8, pp.1160-1172, 2014.
Article (CrossRef Link)

[5] Jiao Zhang, Fengyuan Ren, and Chuang Lin, “Survey on Transport Control in Data Center
Networks,” IEEE Network, vol. 27, no. 4, pp. 22-26, 2013. Article (CrossRef Link)

[6] Lu Yifei, Zhen Ling, Shuhong Zhu and Ling Tang, “SDTCP: Towards Datacenter TCP
Congestion Control with SDN for IoT Applications,” Sensors, Vol.17, no. 1, 2017.
Article (CrossRef Link)

[7] J. F. Kurose and K. W. Ross, “Computer Networking: A Top-Down Approach Featuring the
Internet,” 3rd Edition, Pearson Education, Inc., 2005.

[8] Yanpei Chen, Rean Griffit, David Zats and Randy H. Katz, “Understanding TCP Incast and Its
Implications for Big Data Workloads,” University of California at Berkeley, Technical Report,
2012. Article (CrossRef Link)

[9] Haitao Wu, Zhenqian Feng, Chuanxiong Guo and Yongguang Zhang, “ICTCP: Incast Congestion
Control for TCP in Data-Center Networks,” IEEE/ACM Transactions on Networking, vol. 21, no.
2 pp. 345-358, 2013. Article (CrossRef Link)

[10] Balajee Vamanan, Jahangir Hasan and T. N. Vijaykumar, “Deadline Aware Data Center TCP
(D2TCP),” in Proc. of ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp.
115-126, 2012. Article (CrossRef Link)

[11] Ahmed M Abdelmoniem and Brahim Bensaou, “Efficient Switch-assisted Congestion Control for
Data Centers: An Implementation and Evaluation,” in Proc. of Proceedings IEEE International
Performance Computing and Communications Conference (IPCCC), pp. 1-8, 2015.
Article (CrossRef Link)

[12] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka and Thierry
Turletti, “A Survey of Software-defined Networking: Past, Present, and Future of Programmable
Networks,” IEEE Communications Surveys and Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.
Article (CrossRef Link)

[13] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky and Steve Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.14-76, 2015. Article (CrossRef Link)

[14] Jaehyun Hwang, Joon Yoo, Sang-Hun Lee and Hyun-Wook Jin, “Scalable Congestion Control
Protocol Based on SDN in Data Center Networks,” in Proc. of IEEE Global Communications
Conference (GLOBECOM), pp. 1-6, 2015. Article (CrossRef Link)

[15] Simon Jouet, Colin Perkins and Dimitrios Pezaros, “OTCP: SDN-Managed Congestion Control
for Data Center Networks,” in Proc. of IEEE/IFIP Network Operations and Management
Symposium (NOMS), pp. 171-179, 2016. Article (CrossRef Link)

[16] Chunghan Lee, Yukihiro Nakagawa, Kazuki Hyoudou, Shinji Kobayashi, Osamu Shiraki and
Takeshi Shimizu, “Flow-Aware Congestion Control to Improve Throughput under TCP Incast in
Datacenter Networks,” in Proc. of IEEE Computer Software and Applications Conference, vol. 3,
pp. 155-162, 2015. Article (CrossRef Link)

 [17] Theophilus Benson, Aditya Akella and David A. Maltz, “Network Traffic Characteristics of
Data Centers in the Wild,” in Proc. of Proceedings of the ACM SIGCOMM Conference on
Internet measurement, pp. 267-280, 2010. Article (CrossRef Link)

https://aws.amazon.com/blogs/aws/coming-in-2017-new-aws-region-in-france/
https://doi.org/10.7763/ijmlc.2012.v2.87
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1002/dac.2402
https://doi.org/10.1109/mnet.2013.6574661
https://doi.org/10.3390/s17010109
https://doi.org/10.21236/ada561775
https://doi.org/10.1109/tnet.2012.2197411
https://doi.org/10.1145/2377677.2377709
https://doi.org/10.1109/PCCC.2015.7410274
https://doi.org/10.1109/surv.2014.012214.00180
https://doi.org/10.1109/jproc.2014.2371999
https://doi.org/10.1109/glocom.2015.7417067
https://doi.org/10.1109/noms.2016.7502810
https://doi.org/10.1109/compsac.2015.225
https://doi.org/10.1145/1879141.1879175

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018 5201

[18] Gill Phillipa, Navendu Jain and Nachiappan Nagappan, “Understanding Network Failures in Data
Centers: Measurement, Analysis, and Implications,” in Proc. of ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 350-361, 2011. Article (CrossRef Link)

[19] Yifei Lu, “SED: An SDN-based explicit-deadline-aware TCP for cloud Data Center Networks,”
Tsinghua Science and Technology, vol. 21, no. 5, pp. 491-499, 2016. Article (CrossRef Link)

[20] Christo Wilson, Hitesh Ballani, Thomas Karagiannis and Ant Rowtron, “Better Never than Late:
Meeting Deadlines in Datacenter Networks,” in Proc. of ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 50-61, 2011. Article (CrossRef Link)

[21] Cost of Latency. Retrieved on May 5, 2018. Article (CrossRef Link)
[22] B. Thiruvenkatama and Mukesh Krishnana, “Survey on TCP Incast Problem in Datacenter

Networks,” International Journal of Control Theory and Applications, vol. 9, no. 60, 2016.
Article (CrossRef Link)

[23] Fung Po Tso, Simon Jouet, and Dimitrios P. Pezaros, “Network and Server Resource
Management Strategies for Data Centre Infrastructures: A Survey,” Computer Networks, vol. 106,
pp. 209-225, 2016. Article (CrossRef Link)

[24] Guan Xu, Jun Yang, and Bin Dai, “Challenges and Opportunities on Network Resource
Management in DCN with SDN,” in Proc. of IEEE International Conference on Big Data, pp.
1785-1790, 2015. Article (CrossRef Link)

[25] Prasanthi Sreekumari and Jaeil Jung, “Transport Protocols for Data Center Networks: A Survey
of Issues, Solutions and Challenges,” Photonic Network Communications, vol. 31, no. 1, pp. 112-
128, 2016. Article (CrossRef Link)

[26] Lu Yifei and Shuhong Zhu, “SDN-based TCP Congestion Control in Data Center Networks,” in
Proc. of IEEE International Performance Computing and Communications Conference (IPCCC),
pp. 1-7, 2015. Article (CrossRef Link)

[27] James Roberts, Johnny Skandalakis, Richard Foard and Jason Choi, “A Comparison of SDN
based TCP Congestion Control with TCP Reno and CUBIC,” Technical Report, 2016.
Article (CrossRef Link)

[28] Jitendra Padhye, Victor Firoiu, Donald F. Towsley and James F. Kurose, “Modeling TCP Reno
Performance: A Simple Model and its Empirical Validation,” IEEE/ACM Transactions on
Networking (ToN), vol. 8, no. 2, pp. 133-145, 2000. Article (CrossRef Link)

[29] Sangtae Ha, Injong Rhee and Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64-74, 2008.
Article (CrossRef Link)

[30] Ahmed M Abdelmoniem, and Brahim Bensaou, “SDN-based Incast Congestion Control
Framework for Data Centers: Implementation and Evaluation,” Technical Report, Hong Kong
University of Sciences and Technology, 2016. Article (CrossRef Link)

[31] Ahmed M. Abdelmoniem, Brahim Bensaou and Amuda James Abu, “Mitigating Incast-TCP
Congestion in Data Centers with SDN,” International Annals of Telecommunications Journal,
Springer - Special Issue on Cloud Communications and Networking, 2017.
Article (CrossRef Link)

[32] Simon Jouet and Dimitrios P. Pezaros, “Measurement-based TCP Parameter Tuning in Cloud
Data Centers,” in Proc. of IEEE International Conference on Network Protocols (ICNP), pp. 1-3,
2013. Article (CrossRef Link)

[33] Monia Ghobadi, Soheil Hassas Yeganeh and Yashar Ganjali, “Rethinking End-to-End
Congestion Control in Software Defined Networks,” in Proc. of Proceedings of the ACM
Workshop on Hot Topics in Networks, pp. 61-66, 2012. Article (CrossRef Link)

[34] Yu Xia, Ting Wang, Zhiyang Su and Mounir Hamdi, “Preventing Passive TCP Timeouts in Data
Center Networks with Packet Drop Notification,” in Proc. of International Conference on Cloud
Networking (CloudNet), pp. 173-178, 2014. Article (CrossRef Link)

[35] Jianhua Xu, Hongxiang Guo, Jian Wu, Jintong Lin, DongXu Zhang, Gang Chen, Xingping
Zhang and Chao Chen, “SIG: Solution to TCP Incast in SDN Network Based Openflow Protocol,”
in Proc. of Asia Communications and Photonics Conference, pp. AW4I-5. Optical Society of
America, 2013. Article (CrossRef Link)

https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1109/tst.2016.7590318
https://doi.org/10.1145/2043164.2018443
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://doi.org/10.1109/iscc.2016.7543904
https://doi.org/10.1016/j.comnet.2016.07.002
https://doi.org/10.1109/bigdata.2015.7363950
https://doi.org/10.1007/s11107-015-0550-y
https://doi.org/10.1109/pccc.2015.7410275
https://doi.org/10.13140/RG.2.1.1292.6962
https://doi.org/10.1109/90.842137
https://doi.org/10.1145/1400097.1400105
https://pdfs.semanticscholar.org/d614/23ee06cbce6d121bddb50bbcc7d5e6029c64.pdf
https://doi.org/10.1007/s12243-017-0608-1
https://doi.org/10.1109/icnp.2013.6733644
https://doi.org/10.1145/2390231.2390242
https://doi.org/10.1109/cloudnet.2014.6968988
https://doi.org/10.1364/acp.2013.aw4i.5

 5202 Zawar: Mitigating TCP Incast Issue in Cloud Data Centers using SDN: A Survey

[36] Yaniv Ben-Itzhak, Katherine Barabash, Rami Cohen, Anna Levin and Eran Raichstein,
“EnforSDN: Network Policies Enforcement with SDN,” in Proc. of IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 80-88, 2015. Article (CrossRef Link)

[37] Ahmed M. Abdelmoniem and Brahim Bensaou, “Reconciling Mice and Elephants in Data Center
Networks,” in Proc. of IEEE International Conference on Cloud Networking (CloudNet), pp.
119-124, 2015. Article (CrossRef Link)

Zawar Shah completed his M.EngSc and PhD degree in Telecommunications
from the University of New South Wales (UNSW), Sydney, Australia in 2004 and
2009, respectively. He was the head of Telecommunications and Computer
Networks group at School of Electrical Engineering and Computer Science
(SEECS), which is a constituent college of National University of Sciences and
Technology (NUST), Pakistan. He is currently working as a Senior Lecturer at
Whitireia Community Polytechnic, Auckland, New Zealand. His research interests
include Quality of Service issues in Wireless Networks, Software Defined
Networking, Cloud Computing, Network Architectures and Protocols.

https://doi.org/10.1109/inm.2015.7140279
https://doi.org/10.1109/cloudnet.2015.7335293

