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Abstract 
 

A ( ), ,n t n secret sharing scheme is to share a secret among n  group members, where each 
member also plays a role of a dealer,and any t  shares can be used to recover the secret. In this 
paper, we propose a strong ( ), ,k t n  verifiable multi-secret sharing scheme, where any k  out of 
n  participants operate as dealers. The scheme realizes both threshold structure and adversary 
structure simultaneously, and removes a trusted third party. The secret reconstruction phase is 
performed using an additive homomorphism for decreasing the storage cost. Meanwhile, the 
scheme achieves the pre-verification property in the sense that any participant doesn’t need to 
reveal any information about real master shares in the verification phase. We compare our 
proposal with the previous ( ), ,n t n secret sharing schemes from the perspectives of  what kinds 
of access structures they achieve, what kinds of functionalities they support and whether heavy 
storage cost for secret share is required. Then it shows that our scheme takes the following 
advantages: (a) realizing the adversary structure, (b) allowing any k  out of n  participants to 
operate as dealers, (c) small sized secret share. Moreover, our proposed scheme is a favorable 
candidate to be used in many applications, such as secure multi-party computation and privacy 
preserving data mining, etc. 
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1. Introduction 

A secret sharing scheme (SSS) is to share a secret among a group of participants.In such a 
scheme, any qualified subset of participants, pooling together their shares, can recover the 
secret; whereas any unqualified subset could not obtain any information about it. Secret 
sharing schemes [8,12,19-20] have been widely used in practical applications, such as image 
preserving, implicit data security and e-voting, etc. Secret sharing schemes first introduced by 
Shamir [24] and Blakley [4] in 1979 were based on Lagrange polynomial interpolation and 
projective geometry theory, respectively. In threshold schemes, the shared secret can be 
reconstructed by any t  or more than t  participants, but any set having less than t  participants 
cannot recover it.  
   During the past three decades, many threshold SSSs for a variety of features have been 
presented. In 1999, Lin et. al [16] designed a verifiable threshold multi-secret sharing scheme, 
based on the intractability of the factorization and the discrete logarithm module a large 
composite problems. The scheme provides efficient solutions against cheating by the dealer or 
any participant. In 2000, a multi-secret scheme [5] based on the systematic block codes was 
proposed. After that, a new multi-secret sharing scheme [27] based on Shamir’s secret sharing 
was constructed in 2004. Compared with the scheme reported in [5], the new proposal in [27] 
has fewer public parameters and small storage. In 2008, a dynamic threshold multi-secret 
sharing scheme was given [25], where many secrets are shared in such a way that all secrets 
can be reconstructed independently without refreshing the shares. Before 2009, while keeping 
a view on rounds in a SSS, the best known unconditionally secure protocol needs three rounds 
in sharing phase. Later, Patra et al. [21], by introducing the definition of verification secret 
sharing with only negligible probability of error, designed a novel protocol that takes only two 
rounds in sharing phase and two rounds in reconstruction phase. Subsequently, a verification 
secret sharing scheme [1] within a total of three rounds (only two rounds in sharing and one 
round in reconstruction) was constructed. In 2014, the first multilevel threshold secret sharing 
based on Chinese Remainder Theorem was proposed in [10], where each participant 
keepsonly one private share and the scheme is unconditionally secure. In such a scheme, 
shareholders are classified into different security subsets. The threshold value of a higher-level 
subset is smaller than the threshold value of a lower-level subset. However, the 
aforementioned threshold SSSs need a trusted third party for acting as a dealer. 

In 1990, Ingemarsson and Simmons [13] introduced an idea for removing a trusted third 
party (TTP) in secret sharing, and then presented a simple protocol, where n  participants 
generate shares of the scheme. Subsequently, Pedersen (1991) proposed the first ( ),t n  
threshold secret sharing scheme [22] based on Shamir’s SSS. In Pedersen’s SSS, each 
participant also plays a role as a dealer for distributing secret shares to others without the 
assistance of TTPs. Meanwhile, each one randomly chooses an element, called sub-secret, and 
then distributes it using Shamir’s share generation algorithm to generate the sub-shares for 
other participants. By the property of additive homomorphism [2] of the reconstruction 
algorithm, each participant is able to combine all of his sub-shares into a single share, called 
master secret, which can be recovered with the knowledge of any t  or more than t  master 
shares using Lagrange polynomial interpolation. After that, some cryptosystem protocols 
[15,26] without trusted third parties were proposed. For example, the scheme reported in [26] 
is a threshold undeniable signature scheme without TTPs. The scheme in [15] shares a 
quantum secret without TTPs. 
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In 2010, Harn and Lin [11] presented a strong ( ), ,n t n  verifiable secret sharing scheme 
(VSSS). Such type of schemes are called ( ), ,n t n  SSS since the first parameter n  refers to the 
number of dealers, the second parameter t  refers to the threshold, and the third parameter n  
refers to the number of participants. Meanwhile, a new concept of strong t -consistency of 
shares has been introduced by Harn and Lin [11]. In the proposed scheme, it can be verified 
that all the qualified subsets can recover the same secret. After that, to decrease the number of 
verification polynomials for improving the efficiency of the scheme, Liu (2012) designed an 
efficient ( ), ,n t n  VSSS [17], in which participants generate only one verification polynomial 
for testing the strong t -consistency of shares. Then, Liu’s VSSS achieves multi-secret 
sharing.  

In terms of access structures [3,9,14], it can be seen that the access structure of ( ),t n  
threshold SSSs is a special case of general access structures. In 2009, Qin [23] presented a 
secret sharing scheme that can achieve both the threshold and the adversary structure. 
However, each participant needs to keep a share of relatively big size | |m S , where m  is the 
number of adversary sets and | |S  is the size of the shared secret. In order to improve the 

efficiency, Zhao [28] proposed a new scheme with a share of size 2
( )( 1)| |+| | | |+| | −+S a S a m

t t
, where 

| |a  is the size of populated data. In such schemes [23,28], t  or more than t  participants are 
able to recover the shared secret in general, meanwhile some subsets of parties that each 
containing at least t  participants cannot reconstruct the shared secret. Thus, the scheme can 
efficiently restrict the powers of participants. Finally, inspiring from the ideas proposed in [17, 
28], our motivation is to design an improved SSS that can support adversary structure and 
remove the involvement of trusted third parties simultaneously. 

Contributions. This paper presents a strong ( ), ,k t n  verifiable multi-secret sharing 
scheme that removes a mutually trusted third party. Here, the first parameter k  refers to the 
number of dealers, the second parameter t  refers to the threshold value, and the third 
parameter n  refers to the number of participants. That is, k  out of n  participants also act as 
dealers. Meanwhile, the scheme achieves two structures simultaneously: the threshold 
structure and the adversary structure. The former means that t  or more than t  participants can 
retrieve the master secret, and the latter one means that there are some subsets containing at 
least t  participants cannot recover the secret. In addition, the scheme uses the property of 
additive homomorphism in the reconstruction phase for reducing the storage cost. Therefore, 
the size of share kept by each participant is bounded by 2| |S

t .  
Our scheme satisfies confidentiality in the sense that any unauthorized subset of participants 

cannot recover the shared secret. It can be shown that all sub-shares of the scheme are strong 
t -consistent, thus the proposed scheme can prevent any malicious participants from cheating. 
In particular, most VSSSs [6-7,28] only support post-verification property that each 
participant submits his secret share for doing reciprocal verifications. Therefore, the colluded 
participants (CPs) can obtain real shares of other participants but provide false shares for 
cheating others. Then, an unauthorized subset of CPs may recover the secret. Our scheme 
achieves pre-verification property, where all participants only need to publish their 
verification shares in the verification process, without revealing any information about the real 
master shares. Thus, the new proposal can prevent the attack from CPs. Finally, we compare 
our proposal with the previous ( ), ,n t n SSSs [11,17,22] from the perspectives of  what kinds 
of access structures they achieve, what kinds of functionalities they support and whether heavy 
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storage cost for secret share is required. Then it shows that our scheme takes the following 
advantages: (a) achieving the adversary structure, (b) allowing any k  out of n  participants to 
operate as dealers, (c) small sized secret share. 
   The rest of this work is arranged as follows: In Section 2, some basic concepts are reviewed. 
Our scheme is presented in Section 3. Section 4 proves the confidentiality, verification and 
reconstruction properties of the newly proposed schemes. Finally, conclusions are provided in 
Section 5. 

2. Preliminaries 
    In this section, we review some basic concepts. 
 
2.1 Strong VSSS 
Definition 1. Strong t -consistent [11] . In a ( ),t n  secret sharing scheme, the n  shares are 
strong t -consistent if (a) any subset containing t  or more than t  participants can determine 
the same secret; (b) any 1−t  shares cannot determine the same secret.   
Definition 2. Strong VSSS [11] . In a strong verifiable secret sharing scheme, each participant 
can verify that the shares used for recovering the secret are strong t -consistent.  
 
2.2 The access structure and the adversary structure 

Let { }1 2 …= , , , nQ P P P  be the set of participants. An access structure [24], denoted by Γ , 
is a collection of subsets of Q  satisfying the monotone ascending property: for any ′∈ΓA  
and 2∈ QA , ′⊇A A  implies ∈ΓA . An adversary structure [24], named as Ω , is a 
collection of subsets of Q  satisfying the monotone descending property: for any ′∈ΩA  and 

2∈ QA , ′⊆A A  implies ∈ΩA . Because of the monotone properties, for any access 
structure Γ  and any adversary structure Ω , it is enough to consider the minimum access 
structure:  

                                         { }Γ = ∈Γ |∀ ⊂ ⇒ ∈Γ/min A B A B                                      (1) 
and the maximum adversary structure:  

                                        maxΩ {= ∈B Ω |∀ ⊃ ⇒ ∈/A B A }Ω .                                  (2) 

3. Our scheme 

In this section, we propose a strong ( ), ,k t n  verifiable multi-secret sharing scheme that 
achieves both the threshold and the adversary structure.  

 

3.1 The initialization phase 

Let { }1 2 …= , , , nQ P P P  denote the set of n  participants, and S  denote the master secret. 

Let { }0 1 2 …= , , , kQ P P P  be the set of k  dealers ( ≤k n  and 0 ⊆Q Q ). Suppose that 

1 2 …, , , mA A A  are m  subsets contained in maxΩ  and each of them has at least t  participants. 
Now, we can define the access structure of our scheme as follows:  
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                                  {Γ = :| |≥X X t  and ⊆/ jX A , 1 }= , ,j m .                             (3) 

That are, (a) if | |≥X t  and ⊆/ jX A  (j 1, 2, ,m)=  , then participants in set X  can 

reconstruct the master secret S ; (b) if | |<X t  or ⊆ jX A  (1 )≤ ≤j m , then the participants 
in X  cannot reconstruct S . 
 

3.2 Distribution and Reconstruction of secrets 

Let pF  be a finite field, where p  is a large prime. Based on the previous ( ), ,n t n  schemes 
[17], the new scheme presents a more general model that any k out of n  participants also 
operate as dealers without the assistance of a mutually trusted third party. The master secrets 
are the summations of threshold parameters and adversary control parameters. Then, each step 
of the construction is accomplished by two parallel algorithms for the threshold and the 
adversary structure: the threshold structure  algorithm is based on Shamir’s secret sharing 
algorithm to create m  master shares, and the adversary structure algorithm is used to generate 
control shares. Now, the distribution and reconstruction phases are described as follows:  
Step 1. Master secret generation  

Each participant αP  (1 )α≤ ≤ k  constructs a polynomial  
1

0 1 1( )α α α α
−

, , , −= + + + t
tf x S S x S x , 

where α ,lS  ( α , ∈
m

l pS F , 0 1)≤ ≤ −l t  is an m -dimensional column vector. The master 
polynomial with respect to the threshold structure is defined by  

1
( ) ( )αα=

=∑ kF x f x . 

Let 0 1 1[ ]−= , , , tK S S S  be an ×m t  matrix, where  

1 αα ,=
= ∑ k

l lS S  

for 0 1 1= , , , −l t . On the other hand, αP  (1 )α≤ ≤ k  selects an element αD  from pF . The 
control parameter for the adversary structure is defined by  

1 αα=
=∑ kD D . 

Let M  be an ×m t  matrix with all elements being D . Then the master secret S  can be 
determined as  

= +S K M . 
Step 2. Sub-share generation  

To the threshold structure, each participant αP  (1 )α≤ ≤ k  uses Shamir’s distribution 
algorithm to generate sub-shares, ( )α α, =i is f x  ( 1= , ,i n ), for other participants. Here, 

α ,is  is also an m -dimensional column vector. Then αP  sends α ,is  to iP  secretly, and each 

participant iP  (1 )≤ ≤i n  will receive k  sub-shares α ,is , for α = 1, , k .  

In order to realize the adversary structure, each participant αP  creates an adversary control 
coalition 1 2{ }α α α α, , ,= , , , mH d d d  ( α , ∈ ,j pd F  1 α≤ ≤ k  and 1≤ ≤j m ) such that  
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1 2 …α α α α, , ,= + + + mD d d d . 

If ∈i jP A  (1≤ ≤j m ), then αP  deletes α , jd  from αH , and sends the remaining elements in 

αH  to iP , for 1= , ,i n . Each participant iP  (1 )≤ ≤i n  obtains k  coalitions 

{α α , |jH \ d ∈ ,i jP A 1 }= , ,j m  from participant αP , for 1α = , , k .  

Step 3. Master share generation 

Each participant iP  computes one m -dimensional threshold share and im  adversary 

control shares. iP  calculates threshold master share  

1 1
( )α αα α,= =

= =∑ ∑k k
i i is s f x . 

Meanwhile, participant iP  combines the received sub-shares into the corresponding adversary 
control share as  

1 αα ,=
= ∑ k

j jd d , for 1= , ,j m , 
Then, he keeps a coalition  

( ) {= | ∈/i
j i jH d P A , 1 }= , ,j m . 

That is, ( )| |=i
iH m , and ≤im m . 

Step 4. Verification phase  
Using the method of verification in Liu SSS [11], all participants perform together for 

selecting a k -tuple weight vector 1 2(= , ,
w w w … ), kw , such that 

w  is linearly independent 
to vector (1 1 1), , , , where ∈l pw F ( 1, ,= l k ). Then, iP (1 )≤ ≤i n  computes and 

broadcasts his verification share iv  as  

1 α αα ,=
= ⋅∑ k

i iv w s . 

Any t  participants use Lagrange interpolation formula on the published verification shares. If 
the verification polynomial  

1
( ) ( )α αα=

= ⋅∑ k
wF x w f x  

is t -1 exactly, then the master shares are strong t -consistent (Theorem 2 and Lemma 3). 
Actually, the verification property is pre-verifiable.  
Step 5. Master secret reconstruction  

For any authorized subset ∈ΓX  ( | |≥X t ), the participants in X obtain jd  

( 1 2= , ,j … ),m . With the help of the property of additive homomorphism, they compute  

1 1αα= =
= =∑ ∑k m

jj
D D d  

for reconstructing the adversary control parameter. Meanwhile, with the knowledge of any t  
master shares with respect to the threshold structure, matrix ∗S  can be recovered by Lagrange 
interpolation formula (denoted by ( )⋅XF ). That is, the master polynomial is  

1 21
( ) ( ) ( )αα=

= = , , ,∑ 
t

k
X l l lF x f x F s s s , 
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where 
1

…, ,
tl ls s  are threshold shares. Thus, the master secret matrix S  as = +S K M  can 

be reconstructed by the participants in X  (see the correctness proof of Theorem 4).  
Now, we analyze the aforementioned distribution and the reconstruction phases. Each 

participant iP  computes his adversary shares as 
1 αα ,=

= ∑ k
j jd d , for 1= , ,j m  and 

∈/i jP A , without storing all received sub-shares ( 1α α, = , , ,jd k 1 )= , ,j m . Otherwise, 
the number of shares kept by each participant is proportional to the number of participants. 
Observe that the reconstruction of control parameter D  is achieved based on the property of 
additive homomorphism. The following two tables present the distribution of master shares of 
the scheme.   

Table 1. Master share for threshold structure 

 1P    kP  Master share 

1P  1 1,s    1,ks  1 11 αα ,=
= ∑ ks s  

2P  1 2,s    2,ks  2 21 αα ,=
= ∑ ks s  

          

nP  1,ns    ,k ns  
1 αα ,=

= ∑ k
n ns s  

 
Table 2. Master share for adversary structure 

 1P    kP  Master share 

1P  1 1 1{ }, | ∈j jH \ d P A    1{ }, | ∈k k j jH \ d P A  1{ 1 }| ∈ , ≤ ≤/j jd P A j m  

2P  1 1 2{ }, | ∈j jH \ d P A    2{ }, | ∈k k j jH \ d P A  2{ 1 }| ∈ , ≤ ≤/j jd P A j m
 

          

nP  1 1{ }, | ∈j n jH \ d P A    { }, | ∈k k j n jH \ d P A  { 1 }| ∈ , ≤ ≤/j n jd P A j m
 

4. Analysis and discussion 
  In the upcoming section, we present the analysis of our proposed scheme. 

4.1 Security Proof   
The security of secret sharing scheme is based on that of Shamir’s SSS, thus the proposal is 

secure in information theory. Now we prove that any unauthorized subset cannot recover the 
shared secret (Theorem 1). 
Theorem 1. If | |<X t  or (1 )⊆ ≤ ≤jX A j m , then the participants in set X  cannot 
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reconstruct the master secret matrix S .   
Proof. If | |<X t , the participants cannot get enough threshold shares to generate 
(t 1)− -degree master polynomial ( )F x . Furthermore, the vector 1 2( )= , , ,


 kw w w w  is 

linearly independent to (1 1 1), , , , this implies that the verification shares cannot reveal any 
information about master shares. Thus, they cannot compute matrix K . On the other hand, if 
X ⊆ jA (1≤ )≤j m , any participant in X  is not able to obtain the array 

1 2{ }, , ,, , ,j j k jd d d , then 
1 αα ,=

= ∑ k
j jd d  and thus, D  cannot be computed. Therefore, the 

participants in X  cannot recover the master secret matrix S . 

4.2 The Verification property 
The scheme satisfies the pre-verification property that any t  participants can check the 

validity of secret shares without disclosing their real share. Now we give the verification 
analysis below.   
Theorem 2. Any t  or more than t  participants can retrieve verification polynomial ( )wF x .   
Proof. With the knowledge of any t  or more than t  verification shares, the participants can 
recover verification polynomial 

1
( ) ( )α αα=

=∑ k
wF x w f x  with the help of the property of 

additive homomorphism and applying Lagrange interpolation formula on the verification 
shares. Let 

1 2
{ }= , , ,

tl l lX P P P  be an authorized subset of participants, and  

1 2 1 1
( )α α α α

−
, , , , −= ≤ ≤ , ≠
, , , = ⋅∑ ∏ lr

t d l ld r

t x x
X l l l l x xd r t r d

F s s s s , 

where 
1

−

−≤ ≤ , ≠
=∏ lr

d l ld r

x x
l x xr t r d

y  ( 1 )= , ,d t  are called interpolation coefficients. Then, we 

obtain the following equations:  

1 21 1 1 1( ) ( ), , ,= , , ,
tX l l lf x F s s s ; 

1 22 2 2 2( ) ( ), , ,= , , ,
tX l l lf x F s s s ; 

… 

1 2
( ) ( ), , ,= , , ,

tk X k l k l k lf x F s s s . 
Thus, we have  

1
( ) ( )α αα=

= ⋅∑ k
wF x w f x                                                                                                    (4)  

1 2 1 21 1 1 1( ) ( ), , , , , ,= , , , + + , , ,  
t tX l l l k X k l k l k lw F s s s w F s s s                                           (5)  

1 21 1 1
[( ) ( ) ( )]α α α α α αα α α, , ,= = =

= ⋅ , ⋅ , , ⋅∑ ∑ ∑
t

k k k
X l l lF w s w s w s                                        (6) 

1 2
( )= , , ,

tX l l lF v v v                                                                                                                          (7) 
                                   

We observe that Eq.(5) and Eq.(6) follow from Shamir’s secret reconstruction algorithm 
using Lagrange interpolation formula and the property of additive homomorphism, 
respectively.    
Lemma 3. If the degree of verification polynomial 

1
( ) ( )α αα=

= ⋅∑ k
wF x w f x  is exactly 1−t , 

then, the degree of master polynomial 
1

( ) ( )αα=
=∑ kF x f x  is exactly 1−t .   
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Proof. We follow the same method for proving this lemma as used for proving Theorem 1 in 
[17]. Assume that there exists a polynomial ( )(1 )α α≤ ≤f x k , with degree larger than 1−t  

(say t ). Let αa  be the first coordinate of the coefficient vector associated with the term tx  of 

( )αf x . Then, the probability that the degree of verification polynomial 

1
( ) ( )α αα=

= ⋅∑ k
wF x w f x  is 1−t  exactly equals to the probability that 

1 1 2 2 … 0+ + + =k kw a w a w a . Since αa ( α ∈
m
pa F , 1 )α≤ ≤ k  is selected randomly and 

independently, then this probability is 
1( ) 1

( )

−

=
m n

m n m
p
p p

, which can be ignored, for large prime  p . 

Thus, if the degree of polynomial ( )wF x  is exactly 1−t , then the degree of each polynomial 
( )αf x (1 )α≤ ≤ k  is at most 1−t .  

On the other hand, let '
αa  be the first coordinate of the coefficient vector associated with the 

term 1−tx  of ( )αf x . If at least one of ' (1 )α α≤ ≤a k  is nonzero, then the probability that 
' ' '
1 2 … 0+ + + =ka a a  is 1

mp
, which can also be negligible. Therefore, the degree of the master 

polynomial 
1

( ) ( )αα=
=∑ kF x f x  is exactly 1−t .   

From the aforementioned proof, we conclude that if colluded participants in 0Q  select 

polynomials ( )(1 )α α≤ ≤f x k , having degree not equal to 1−t , then they cannot pass the 
verification. Therefore, the proposed scheme satisfies the definition of strong VSSS. 
Meanwhile, since the vector 1( ), , kw w  is linearly independent to vector (1 1), , , hence no 
information about the real master shares can be revealed in the verification phase. Thus, the 
scheme has the advantage of pre-verification for that any participant doesn’t need to submit his 
real share in the verification phase. Moreover, it is worthwhile to note that the fraud 
probability of the new scheme is 1

mp
. This probability takes an exponential decline increment 

in the value of parameter m . Therefore, compared with the previous VSSS [17] having the 
fraud probability 1

p , our scheme just needs a smaller p  for insuring that the corresponding 
fraud probability can be negligible. In such a way, the computational efficiency is improved to 
some extent.  

4.3 The Reconstruction property 
Theorem 4. For any authorized subset ∈ΓX , the participants in X  can reconstruct the 
master secret S .   
Proof. Let 1 2( ) (1 1 1), , , = , , , kw w w  in the proof of Theorem 2, then we have that the 
participants in X  can reconstruct master polynomial  

11
( ) ( ) ( )αα=

= = , ,∑ 
t

k
X l lF x f x F s s . 

to obtain matrix K . On the other hand, since ∈ΓX , that is, | |≥X t  and 
( 1 2 )⊆ = , , ,/ jX A j m , this implies that there exists at least one participant having 

1 αα ,=
= ∑ k

j jd d , for every {1 2 }∈ , , ,j m . Then the participants in X  can obtain set 
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1 2{ }, , , md d d  by pooling together their shares. Furthermore, we have that 

1 1 1 1 1 1
( ) ( )α α αα α α, ,= = = = = =

= = = =∑ ∑ ∑ ∑ ∑ ∑m m k k m k
j j jj j j

d d d D D . 

 
The second equation follows from the property of additive homomorphism. Thus, all the 
participants in X work together for computing 

1=
=∑m

jj
D d  and get matrix M . Hence, they 

can recover the master secret matrix S . 

4.4 The Dynamic property 
A secret sharing scheme is said to be dynamic, if any participant can join and leave 

dynamically. The previous ( ), ,n t n  threshold SSSs [11,17] realize the dynamic property. 
Now we point out that our scheme under the complicated model also supports this property 
and analyze various cases in terms of control parameter D  for the adversary structure. 
Case 1.  Suppose that participant lP  leaves from set 1{ ,P …, }nP . If 0∈lP Q , then control 
parameter D  of the scheme is determined as  

1

1 1α αα α

−

= = +
= +∑ ∑l k

l
D D D . 

Participant iP  (1≤ ≤i n , )≠i l  just needs to delete set { , |l l j iH \ d P ∈ ,jA 1 }= , ,j m  

received from lP . The remaining participants compute their new shares as  
1

1 1α αα α

−

, ,= = +
= +∑ ∑l k

j j jl
d d d  ( 1 )= , ,j m . 

If 0\∈lP Q Q , then k  dealers need to update their control parameters α , jd , for 1α = , , k , 

and ∈/l jP A . The participants compute their new shares as  

1 αα ,=
= ∑ k

j jd d , for 1= , ,j m . 

Case 2. Suppose that a new participant 1+nP  joins. If 1+nP  contained in 0Q  acts as a dealer, 
then, he is required to choose one element 1(+ ∈nD )pF  and generate a control coalition 

1 1 1 1 2 1{ }+ + , + , + ,= , , ,n n n n mH d d d  such that 1 11+ + ,=
= ∑m

n n jj
D d . Then, the control parameter 

D  is determined as  

11 αα +=
= +∑ k

nD D D . 

1+nP  sends 1 1{+ + , |n n j iH \ d P ∈ ,jA 1 }= , ,j m  to participant (1 )≤ ≤iP i n . Similarly, 

participant (1 )α α≤ ≤P k  needs to send 1\{α α , +|j nH d P ∈ ,jA 1 }= , ,j m  to 1+nP . All 
participants compute their new shares as  

11 αα , + ,=
= +∑ k

j j n jd d d  ( 1 )= , ,j m . 

If 1 0+ ∈/nP Q , then he receives 1\{α α , +|j nH d P ∈ ,jA 1 }= , ,j m  from (1 )α α≤ ≤P k  and 

computes 
1 αα ,=

= ∑ k
j jd d .  

The analysis on threshold parameter K  can be discussed in the same way.  
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4.5 Efficiency analysis 
In this section, we analyze the efficiency of the newly proposed scheme from angles of 

computational complexity and communication cost, respectively.  
With respect to the computation complexity, we mainly count the number of polynomial 

evaluation and polynomial interpolation in three stages:  
•  Sharing phase: Each participant αP  (1 )α≤ ≤ k  computes ( )α α, =i is f x  ( 1= , ,i n ) 

and sends α ,is  to iP , where α ,is  is an m -dimensional column vector. Thus, mnk  
polynomial evaluations are needed.  
• Verification phase:  Each participant iP (1 )≤ ≤i n  computes an m -dimensional 

verification share 
1 α αα ,=

= ⋅∑ k
i iv w s . The operation of the form of 

1 α αα ,=
⋅∑ k

iw s  can be 

viewed as a polynomial evaluation. Thus, mn  polynomial  interpolations should be used. 
Besides, t  participants adopt Lagrange polynomial interpolation on the published verification 
shares. Thus, m  polynomial  interpolations are needed. 
•  Reconstruction phase:  Based on Lagrange interpolation formula, the secret verification 
and reconstruction can be completed by computing the same interpolating coefficients 

dl
y  

( 1 )= , ,d t . Thus, the reconstruction phase only needs m  polynomial evaluations. 
 

Table 3. Computational complexity 

               Polynomial evaluation Polynomial interpolating 

Sharing phase mnk  −  

Verification phase mn  m  

Reconstruction phase m  −  

 
Remark. The above analysis on computational complexity is  aimed at the threshold structure. 
In addition, since the realization of the adversary structure only utilizes simple module 
additions, therefore, the operation of this part can be negligible.  
    With respect to the communication cost, we describe the bits of communication cost for the 
threshold and the adversary structure: 
•  Access structure: αP  (1 )α≤ ≤ k  sends m -dimensional column vector α ,is  to 

(1 )≤ ≤iP i n . Thus, this part of communication costs log⋅mnk p  bits. 

•  Adversary structure: Each participant (1 )α α≤ ≤P k   sends 1\{α α , +|j nH d P ∈ ,jA  

1 }= , ,j m  to (1 )≤ ≤iP i n . Since 1\{α α , +|j nH d P ∈ ,jA 1 }= , , ≤j m m , then this part 
of communication cost is bounded by log⋅mnk p  bits. 
 
 
 
 

http://www.iciba.com/count
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Table 4. Communication cost 

  Threshold structure Adversary structure 

Bit number log⋅mnk p  log⋅mnk p  

 
4.6 Information rate 

The information rate [18] of one secret sharing scheme is defined by  

( )ρ | |
| |=

i

S
max S P , 

where | |S  denotes the size of secret, and ( )| |iS P  is the size of share kept by participant iP .   
In the scheme, we have that  

( ) log
( ) ( ( )) logρ | | × ⋅

| | + ⋅= =
i i

S m t p
max S P m max m p , 

Since 2≥t  and ( )> im max m , then 2ρ > t  and 1ρ > . Meanwhile, we can obverse that the 

size of share kept by each participant is bounded by 2| |S
t . In Zhao’s scheme, the size of share is 

2
( )( 1)| |+| | | |+| | −+S a S a m

t t
 [28]. For convenience, let | |a , the size of populated data, be zero, then the 

corresponding information rate is given by 
2

1+ −
t

t m  (1 )
=

≤ <∑n i
ni t

m C . The two schemes have 

equal information rates, that is, 
2

2 1+ −=t t
t m , then 1= +m t . Then, we have that Zhao’s SSS has 

a higher information rate if ≤m t ; our scheme is superior to Zhao’s SSS if 1≥ +m t . 
Considering the computational complexity of Lagrange interpolation in a threshold SSS, the 
designer normally selects a small integer as the threshold value. That is, in the most cases, 

1≥ +m t  holds and our scheme has higher information rate than Zhao’s SSS. 
   Finally, the performance comparison among SSSs of [17,28] and our proposal is 
demonstrated as follows: 

Table 5. Performance comparison 

 Liu SSS [17] Zhao SSS [28] Our SSS 

basic model ( ), ,n t n  VSSS ( ),t n  VSSS ( ), ,k t n  VSSS 

Threshold structure Yes Yes Yes 

Adversary structure No Yes Yes 

Without TTPs Yes No Yes 

Without modular Exp 
computation  Yes No Yes 

Share size | |S  2
( 1)+ − | |t m S

t
 2| |S

t  

Information rate 1ρ =  2

1ρ + −= t
t m  2ρ > t  

Pre-verification property Yes No Yes 

Infor. Theory security Yes No Yes 
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       The comparisons given in Table 5 can be further depicted in Fig. 1 and Fig. 2. In Fig. 1 
we compare our proposal with the schemes given in [28] and [17] from the perspectives of 
what kinds of functionalities they support, which kind of security they achieve, and whether 
the trusted third party and some complex computation (such as modular exponential) are 
required. From Figure 1, we can see that our proposal covers all these six desirable merits: 
Simultaneously supporting adversary structure, threshold structure and pre-verification, 
achieving information-theory security (or equivalently, without depend upon any intractability 
assumption), and needless TTP and modular exponential computation. In Figure 2 we 
compare these schemes from the perspective of information rate. It shows that our scheme can 
gain even higher information rate. In particular, with the increase of  (i.e., the number of 
adversary sets) or  (i.e., the threshold value), the advantages of our proposal become even 
clear. 

 
Fig. 1. Functionalities comparison 

 
Fig. 2. Information rate comparison 
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Remark. Our scheme has relatively higher computational complexity and communication 
cost among the three schemes, since it achieves more properties than scheme [17] and scheme 
[28], respectively. 

5. Conclusions 

In this paper, based on the previous ( ), ,n t n  VSSSs, we propose a more general ( ), ,k t n  
VSSS, in which any k  out of n  participants also operate as dealers. The scheme realizes the 
threshold and the adversary structure simultaneously. In such a way, it restricts the powers of 
participants in secret reconstruction phase efficiently. Taking the advantage of additive 
homomorphism, the size of share stored by each participant is reduced for improving the 
efficiency of our scheme. In addition, our scheme has the advantage of the pre-verification 
property. 
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