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Abstract 

 

In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using  

motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to 

improve the compression performance of low-delay distributed video coding (DVC). In the 

CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of 

each block are acquired at the encoder, and a specific CS reconstruction algorithm is 

proposed to correct errors in the SI using CS measurements at the decoder. In order to 

generate high quality SI, a MAAR model is introduced to improve the inaccurate motion 

field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients 

and overlapped block based interpolation are performed to reduce block effects and errors 

from over-fitting. Simulation experiments show that our proposed CS based WZ codec 

associated with MAAR based SI generation achieves better results compared to other SI 

extrapolation methods. 

Key words: Compressed sensing, Wyner-Ziv codec, side information, motion-aligned auto 

regressive model 
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1. Introduction 

With rapid advances of multimedia communication, new requirements of video 

applications come to the stage, such as wireless video surveillance, wireless PC camera, 

mobile video calls, wireless multimedia sensor network, and so on. However, these video 

applications require a low-cost encoder since the computational power, memory and/or 

battery capacities are scarce at the encoder. Traditional video encoder based on hybrid 

coding framework (e.g. H.26x, MEPG) is commonly 5 to 10 times more complex than the 

decoder on account of performing motion estimation (ME) and motion compensation (MC) 

to fully exploit redundancy existing in the video. Therefore, the traditional video coding 

faces many challenges in these new video applications.  

In order to alleviate the complexity burden of the encoder, distributed video coding 

(DVC) [1], which enables to explore the video statistics, partially or totally, at the decoder 

only, relying on a low encoding complexity, has received wide attention. The mathematics 

philosophy of DVC was proposed and discussed by Slepian and Wolf [2] according to the 

Information Theory. The complement of Slepian-Wolf coding for lossy compression is the 

Wyner-Ziv (WZ) coding [3] which deals with lossy source coding of X with side information 

(SI) Y at the decoder and can reduce complexity of the encoder by shifting ME and MC to 

the decoder. The SI is usually interpreted as an attempt made by the decoder to obtain an 

estimate of the original frame. In the WZ coding scenario, error correcting codes are used to 

improve the quality of SI until a target quality for the final decoded frame is achieved. One 

of the most interesting DVC systems is the asymmetric WZ coding scheme [4] proposed by 

Aaron et al. in which the key frames are encoded by H.263+ intra frame mode and the WZ 

frames are encoded by Slepian-Wolf codec based turbo codes. 

From the above-mentioned content, we can see that performance of DVC system 

depends on two factors: the first one is the quality of SI, and the second one is the correction 

capability of WZ coding. Both are quite difficult since original frames are not available at the 

decoder and the statistics of video source are dynamically varying in spatial and temporal 

domain. 

For the way SI generated, DVC can be categorized into interpolation and extrapolation 

case. In interpolation case, SI is generated by the interpolating between the previous and 

following reconstructed WZ/key frames [5]. On the contrary, in the extrapolation case, the SI 

is generated by referring only the previous reconstructed frame [6-7], similar to the P frame 

coding in hybrid video coding. Although the SI generated by interpolating has superior 

performance than that generated by extrapolating since the former can use the future 

information to generate SI, the extrapolation DVC is very desirable for low latency cases 

since the decoding process begins as soon as it receives the previous reconstructed frame 

without waiting for the arrival of the following reconstructed key frame. To improve the 

compression performance of low-delay DVC, many extrapolation schemes have been 
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proposed to develop the quality of SI. Natario et al. [7] proposed a robust extrapolation 

module to generate SI based on translational motion model. In this method, the extrapolation 

is completed by ME, motion field smoothening, motion projection as well as overlapping 

and uncovered areas. However, this translational motion model is not always satisfied, 

especially for video sequences with high motion. Zhang et al. [8] proposed an auto 

regressive (AR) model to replace the translational motion model and improve the quality of 

SI. In AR model, the SI of each pixel within the current WZ frame t is generated as a linear 

weighted summation of pixels within a window in the previous reconstructed WZ/key frame 

t-1 along the motion trajectory. The method based on AR model regards SI extrapolation as 

an adaptive filtering problem and implicitly embeds motion information into the filter 

coefficients, but several unreasonable assumptions on motion trajectory and AR coefficients 

also lead to appearance of block effects and over-fitting. 

After generating SI, the WZ coding is performed to correct some errors existing in SI. 

The conventional WZ encoder applies a channel code (usually a turbo code or a LDPC code) 

to the pixels or transform coefficients of the frame, and transmits a portion of the resulting 

parity bits. The decoder uses the received parity bits to correct errors in SI and controls the 

bit-rate by a feedback channel. Recently, the appearance of compressed sensing (CS) offers a 

new idea for WZ coding. CS theory demonstrates that signals which have sparse 

representation under some transform domain can be sampled at sub-Nyquist rates via linear 

projection onto a random basis while still enabling exact reconstruction of the original signal, 

which provides the potential of dramatic reduction of computation complexity in video 

compression. Based on CS theory, some practical DVC systems have been presented. Do et 

al. proposed distributed compressed video sensing (DISCOS) [9] to perform WZ coding. In 

their framework, the key frames are encoded by traditional H.26x intra mode and WZ frames 

are encoded by CS measurement matrix (e.g. Structurally Random Matrices, SRMs [10]). 

The WZ decoder utilizes a CS reconstruction algorithm to recover the original frame by 

exploiting the temporal correlation with neighboring key frame. Liu et al. proposed block 

based adaptive compressed sensing [11] to allocate CS measurements for every video frame 

which further improves the performance of WZ coding. Besides, Baig et al. provided CS 

based WZ coding scheme [12] by incorporating SI generation into the decoder, and the SI 

generation scheme exploits the correlation between CS measurements of nearby frames. 

Although these CS based DVC systems can obtain a good quality of decoder frame, they fail 

to take quantization and entropy coding into account and therefore lose practical engineering 

significance. In addition, the crucial SI in conventional WZ coding is not fully utilized in CS 

reconstruction. 

To advance the compression performance of low-delay DVC, we improve the correction 

capability of WZ coding and the quality of SI respectively in this paper. Firstly, a CS based 

WZ codec is proposed to implement error correction and rate control in the popular DVC 

architecture proposed by [4]. The proposed WZ encoder uses the same random measurement 
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matrix to sample every block of the original frame and saves these CS measurements in a 

buffer after quantization and entropy coding. Depending on the assumed correlation channel 

model and SI, the decoder detects some blocks having a certain amount of errors in SI and 

requires the encoder to transmit a portion of CS measurements saved in the buffer by a 

feedback channel. Then, a specific CS reconstruction algorithm uses these CS measurements 

to correct the errors in the SI. With accurate prediction of the SI and the high-efficient CS 

based error-correction algorithm, our WZ codec can effectively reduce the bit rate of a DVC 

system while enabling exact reconstruction of the original frames. Secondly, in order to 

obtain higher quality SI in a low delay DVC, we also improve the AR model proposed by [8] 

and introduce the motion-aligned auto regressive model (MAAR) which appears in [13] to 

acquire more accurate motion trajectory. The MAAR model can refine the inaccurate motion 

field in AR model to improve the resulting block effects. In SI extrapolation based on AR 

model, the AR coefficients are computed by the Least Mean Square (LMS) algorithm. 

However, without prior knowledge of the AR coefficients, over-fitting happens in the 

estimated SI. In order to overcome over-fitting, we perform LMS algorithm with smooth 

constraint to compute MAAR coefficients. The smooth constraint fully utilizes a prior 

knowledge on similarity between the target pixel value and the training pixel samples which 

is measured by Tikhonov matrix. Besides, the overlapped block is also proposed to reduce 

block effects and over-fitting. To verify the performance of the proposed CS based WZ 

codec using MAAR model based SI extrapolation for low-delay DVC, various experiments 

are conducted. The simulation results have confirmed that our SI extrapolation is able to 

achieve SI with much higher accuracy compared with other existing methods, especially for 

AR model based SI extrapolation, and the proposed CS based WZ codec can also obtain a 

good error correction capability. 

The reminder of this paper is as follows. The overall architecture of the proposed system 

is first presented in Section 2. Then the CS based WZ codec is described in detail in Section 

3. The SI extrapolation using MAAR model is presented in Section 4 followed by the 

experimental results and analysis in Section 5. Finally the conclusions are provided in the 

last section. 

2. Framework Overview 

The block diagram of the low-delay DVC composed of the proposed CS based WZ codec 

and MAAR model based SI extrapolation is depicted in Fig.1. The coding process starts by 

dividing the input frames into key frames and WZ frames. At the encoder side, the key 

frames are encoded using the H.264/AVC intra coding scheme. The WZ frames are divided 

into small blocks and sampled with the same random measurement matrix. After uniform 

quantization and entropy coding, the bits encoded by CS measurements are stored in the 

buffer and transmitted in small amount upon decoder request. 

At the decoder side, the key frames are decoded using H.264/AVC intra decoding scheme. 
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For the WZ frames, the SI is first generated by the proposed MAAR model. As shown in 

Fig.1, the SI generation consists of forward and backward MAAR models whose coefficients 

are computed using similar derivations proposed by [8]. Different from the computing of AR 

coefficients in [8], we use LMS algorithm with smooth constraint to compute MAAR 

coefficients. In order to reduce block effects and over-fitting, the overlapped block is used to 

interpolate SI. Results of the two models are then averaged to generate the final SI. Then the 

iterative WZ decoder receives an amount of CS measurements by feedback channel to 

correct the SI errors and generate the WZ decoded frame using the specific CS 

reconstruction algorithm.  
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Fig. 1. The block diagram of the low-delay DVC composed of the proposed CS based WZ codec and 

MAAR model based SI extrapolation 

3. WZ Video Codec Based on CS 

3.1 Encoding Using Block CS Sampling 

At the WZ encoder side, the WZ frame X is divided into small blocks with size B× B each 

and sampled with the same measurement matrix. Let xi represent the vectorized signal of the 

i-th block through raster scanning. The corresponding output CS vector yi can be written as  

i iy Ax                                   (1) 

where A is an MB× B
2
 matrix, and MB is CS measurements of each block. In general, image 

has a sparse representation in the known DCT transform domain, and the visual property of 

human eye determines that the low and medium frequency DCT coefficients are more 

important than the high frequency ones. Therefore, we only need to sample the low and 

medium frequency DCT coefficients by a random measurement matrix and perform CS 

reconstruction algorithm to recovery them. For this purpose, the matrix A consists of two 

parts: the orthonormalized i.i.d Gaussian matrix Φ and the special DCT transform matrix Ψ 

which is used to extract low and medium frequency DCT coefficients of each image block, 

that is, A =ΦΨ. As shown in Fig. 2, we regard the first 70 DCT coefficients in zigzag order 
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as the low and medium frequency of each image block with size 16×16. From empirical 

studies, we suggest block size B = 16 for video sequences hereafter. 
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Fig. 2. The low and medium frequency DCT coefficients of each image block with size 16×16 

Finally, the CS measurements acquired by block CS sampling are uniformly quantified 

and encoded into bits by an adaptive arithmetic coder proposed in [14]. These bits will be 

stored in the buffer and transmitted in small amount upon decoder request. 

3.2 Decoding Using CS Reconstruction Algorithm with SI 

At the WZ decoder side, the decoder takes previously reconstructed frames to form the SI, Y, 

which is an estimate of original WZ frame X. However, there will always be a certain 

amount of errors in Y since the statistics of video source are dynamically varying in spatial 

and temporal domain. In our framework, these errors can be corrected by some CS 

measurements upon decoder request and the process of error recovery is presented in Fig. 3. 

Firstly, we divide the SI Y into blocks with size B×B and compute error energy Ee of each 

block Bsi in SI by the virtual correlation channel which can be modeled using a Laplacian 

distribution of the difference between original frame and SI. The decoder estimates the 

Laplacian parameter by observing the statistics from previously decoded frame [15]. 

Secondly, the decoder is to determine whether error energy Ee of each block is greater than 

or equal to threshold T. If the current block exceeds the threshold T, then the decoder 

requires the encoder to transmit K CS measurements to correct these errors and otherwise to 

skip the current block. Then, in order to control bit rate, the decoder is to detect whether total 

CS measurements M of the current block is less than the preset upper limit Mupper , and 

reconstructs the current block by using CS recovery algorithm if M < Mupper satisfied. There 

are still some errors existing in the reconstructed block and the next error recovery is 

performed. Finally, we combine all reconstructed blocks xi into the decoded WZ frame.  

For the CS reconstruction algorithm, we merge the priori knowledge on SI into the 

reconstructive process in contrast with the traditional CS algorithm using only sparse prior. 

The optimal model of our CS reconstruction algorithm is as follows, 

1
min

i
i

x
Ψx ,                                      
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. .  i i is t  y Ax ΦΨx ,                            (2) 

2
      i si  x B .  

In this optimal model, the SI Bsi is regarded as a noisy estimation of current block xi , so the 

solution to (2) exists in the intersection of the l2-ball P = {xi: ||xi-Bsi||2 ≤ ε} and the 

hyperplane H = {xi: yi = Axi}. However, there are still infinite points in the intersection, and 

we add a regularization using the priori knowledge that the low and medium DCT 

coefficients of xi are sparse to find the optimal solution to (2). 

Divide the SI Y into blocks

Error energy of current 

block Ee ≥ T  ?

Require K CS 

measurements from 

encoder

Total CS measurements of 

current block M < Mupper ?

CS reconstruction with SI 

Combine all blocks into a 

frame

Y

N

Y

N

Decoded WZ frame

Current block Bsi

Reconstructed 

block xi

 

Fig. 3. The flowchart of error recovery for each block in SI 

In order to solve the model (2), a variant of projected Landweber (PL) algorithm [16] is 

proposed as highlighted in Table 1. In each iteration, we first compute the distance between 

the current block at iteration k, xi
(k)

, and Bsi as follows, 

( )

2i

k

sidist  x B .                             (3) 
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To project xi
(k)

 onto the l2-ball P, we simply apply a thresholding operation, 

( )

( )
2

( )

                    

     

i

i

k

k

i
k

si

dist

dist
dist






 


 
 



x

x
B x

 .                      (4) 

Then, the POCS (Projection onto Convex Set) [17] is performed to find the closest vector 

( )ˆ k

ix on H for
( )k

ix , 

( ) ( ) T T 1 ( )ˆ ( ) ( )k k k

i i i i

  x x A AA y Ax .                    (5) 

Since the low and medium frequency DCT coefficients of the current block are sparse, the 

hard thresholding [18] is used to enforce their sparsity, and the process of hard thresholding 

is presented as follows, 

( ) ( )ˆk k

i iα Ψx ,                                   (6)  

( ) ( ) ( )

( )
       2log

ˆ
0            

k k k

i ik

i

L

else

 
 


α α
α ,               (7) 

( ) ( )ˆk k

i ix Γα ,                                   (8) 

where λ is a constant control factor to mange convergence, L is the number of the transform 

coefficients, and σ
(k)

 is estimated using robust median estimator,  

( )

( )
( )

0.6745

k

ik
median

 
α

.                              (9) 

The function of matrix Г is to reposition the shrunk low and medium frequency DCT 

coefficients and transform DCT coefficients into pixel domain. Finally, we do the POCS 

again to ensure that the estimated block at iteration k+1, xi
(k+1)

 exists in the hyperplane H. In 

addition, we initialize with xi
(0)

 = Bsi and terminate when |D
(k+1)

-D
(k)

| < Tol, where  

( ) ( 1) ( )

2

1
ˆk k k

i iD
B

 x x .                            (10) 

We analyze the complexity of the proposed CS algorithm as follows. At each iteration, the 

thresholding operation which projects xi
(k)

 onto the l2-ball P only requires O(B
4
) operations. 

The computational cost of POCS is essentially the cost of applying A and its transpose A
T
. (If 

necessary, (AA
T
)
-1

 can be computed beforehand), and applying the M×B
2
 measurement matrix A 

will require O(MB
2
) operations in general. For the process of hard thresholding, the major 

amount of computation is the cost of DCT and IDCT transform which require O(LB
2
) 

operations, if we use fast transformation of DCT and IDCT, the complexity can be reduced to 

O(L). 
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Table 1. Summary of the proposed CS reconstruction algorithm with SI 

Algorithm model : 
1

min
i

i
x
Ψx , . .  i i is t  y Ax ΦΨx , 

2i si  x B  

Input: Initial solution xi
(0)

 = Bsi; CS measurements yi; Measurement matrix Φ; Low and medium 

frequency DCT matrix Ψ; Error tolerance ε; Termination threshold Tol; Control factor λ; 

Maximum number of iterations smax. 

Output: Reconstructed block xi. 

for k = 1 to smax do 

      Compute dist according to Eq (3); 

      if dist ≤ ε 

        
( ) ( )

i

k k

i x x ; 

else 

        
2

( ) ( )

i

k k

i si
dist


 x B x ; 

end if 

      Compute 
( )ˆ k

ix  according to Eq (5); 

      Compute 
( )k

ix  by doing hard thresholding according to Eq (6)-(9); 

      Compute 
( 1)k

i


x and D

(k+1)
 according to Eq (5) and Eq (10); 

      if |D
(k+1)

-D
(k)

| < Tol 

         break; 

      end if  

   end for 

4. SI Extrapolation Using MAAR Model 

The SI extrapolation based on AR model proposed by [8] is able to achieve SI with much 

higher accuracy by using three assumptions which are as follows: 

1) All the pixels within each block in SI share the same AR coefficients on account of the 

piecewise stationary characteristics of the frame; 

2) Each block in SI and its co-located block in previous reconstructed frame obey the 

same motion trends; 

3) The same AR coefficients are used to interpolate the block in SI and its co-located 

block in previous reconstructed frame along the motion trajectory within adjacent frames. 

Owing to the fact that the computation of AR coefficients depends on a high similarity 

along the motion trajectory, it is important to estimate accurate motion field of SI. However, 

the second assumption is obviously unreasonable since some differences exist between 
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motion fields of two continuous frames, especially for the video sequences with high 

motions. Therefore, we should predict reasonably the motion field of SI. In this section, we 

will introduce MAAR model to overcome the unreasonable assumption on motion trajectory 

in AR model. Besides, in order to obtain the more accurate AR coefficients, the LMS 

algorithm with smooth constrain and the interpolation using overlapped block are proposed 

to reduce block effects and over-fitting. 

4.1 MAAR Model Description 

In MAAR model, the SI of each pixel within the current WZ frame t is generated as a 

weighted summation of the pixels within a particular window in the previous reconstructed 

WZ/K frame t-1 as shown in Fig. 4. Let Xt be the current WZ frame at t, and Yt be the SI of 

Xt. For each pixel in Xt, the window, indicated by the circles and the red arrow at frame Xt-1, 

is determined by the integer-pixel accuracy motion field which is estimated as follows: 

 

Fig. 4. The MAAR model using forward derivation 

1) Motion vectors are estimated for each block in the reconstructed frame Xt-1 by taking 

the reconstructed frame Xt-2 as reference. To overcome the problem that a small block size is 

likely to obtain inaccurate motion vectors if common block-matching algorithm (BMA) is 

used, we use overlapped block motion estimation (OBME). For each b×b block in Xt, we 

firstly enlarge the block size to 3b/2×3b/2, and then use the enlarged block to find the best 

matching block in search window with size b×b and give the computed motion vector to the 

b×b block. 

2) For each block, a new motion vector is calculated by the weighted median vector filter 

[19]. This leads to a smoothed motion vector field where true motion is capture. 

3) The pixel from the reconstructed frame Xt-1 are projected to the next time instant using 

the motion field obtained above assuming that the motion is linear and that, therefore, the 

warping of frame Xt-2 into Xt-1 will linearly continue from frame Xt-1 to frame Xt.  

4) Since the motion vectors obtained do not necessarily intercept the frame Xt at the 

center of each non-overlapped block in the frame Xt, it is possible for the frame Xt to have no 

or multiple motion trajectories on some blocks. In order to assign a single motion vector for 

each non-overlapped block in the frame Xt, the motion vector nearest to the center of the 
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non-overlapped block is selected from the available candidate vectors obtained in the 

previous step. 

After the determination of the window, the weighted summation is performed as  

1

( , )

( , ) ( , ) ( , )t t

R i j R

m n m i n j i j

  

   Y X .               (11) 

Here Yt(m,n) represents the SI of the pixel located at (m,n), ( m , n ) represents the 

corresponding integer-pixel position in Xt-1 determined by the motion vector of Xt(m,n), and 

α(i,j) is the forward MAAR coefficient from frame Xt-1 to frame Xt. R is defined to be the 

radius of the window, the size of which is (2R+1)×(2R+1). Due to the high similarity along 

the motion trajectory, we assume that all pixels in motion trajectory from frame Xt-2 to frame 

Xt are computed using the same MAAR coefficients, that is,  

1 2

( , )

( , ) ( , ) ( , )t t

R i j R

m n m i n j i j 

  

   X X ,               (12) 

where ( m , n ) represents the corresponding integer-pixel position in Xt-2 determined by the 

motion vector of 
1( , )t m nX  which is also estimated using OBME.  

4.2 Computation of MAAR Coefficients and Overlapped Block Interpolation 

Obviously, the coefficient estimation plays a critical role for the quality of SI generated by 

the proposed MAAR model. Since there is no access to the actual pixel in the current WZ 

frame Xt at the decoder, the previous two continuous frames Xt-1 and Xt-2 are fully utilized to 

estimate MAAR coefficients. A forward derivation is proposed as shown in Fig. 5. 

According to the estimated motion field of Xt, for each block ( , )t k lB  located at position (k,l) 

within Xt, we find its matching block 
1( , )t k lB  in the previous reconstructed WZ/key frame 

Xt-1. Then, we find the best matching block 
2( , )t k lB  for 

1( , )t k lB  in the reconstructed 

WZ/key frame Xt-2. Depending on the high similarity along the motion trajectory, the 

forward MAAR coefficients for interpolating 
1( , )t k lB  as the linear combination of pixels in 

2( , )t k lB  are same with those for interpolating ( , )t k lB as the linear combination of pixels in 

1( , )t k lB . Therefore, the forward MAAR coefficients can be calculated by using known 

2( , )t k lB  and 
1( , )t k lB . Due to the piecewise stationary characteristics of the frame, all the 

pixel within block 
1( , )t k lB  can be predicted using the same MAAR coefficients as follows,  

11 12 1 1 1

21 22 2 2 2

1 2

1 2

N

N

t t

S S SN N N

c c c n

c c c n

c c c n







 

     
     
        
     
     
     

B C α n .           (13) 

Here, Bt-1 represents the vectorized signal of 
1( , )t k lB  through raster scanning, S denotes the 

number of pixels within 
1( , )t k lB , N is the number of the MAAR coefficients, that is, N = 

(2R+1)×(2R+1), n is the additive white Gaussian noise, and the (2R+1)×(2R+1) window 

of each pixel within 1( , )t k lB  is packed into a 1×N row vector, then a matrix Ct-2 sized S×N 

is obtained. The best coefficients can be computed by LMS criterion, which can be described as  
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2

1 2 2arg min{|| || }t t  
α

α B C α .                      (14) 

XtXt-1Xt-2

( , )t k lB
1( , )t k lB

2 ( , )t k lB

 

Fig. 5. Coefficient approximation illustration 

However, without prior knowledge of the MAAR coefficients α, the model (14) often 

produces over-fitting. To reducing the bad effects caused by over-fitting, the most common 

approach is to regularize the LMS model using Tikhonov regularization which imposes an l2 

penalty on the norm of α, that is, 

22

1 2 2 2
arg min{|| || }t t    

α
α B C α Λα ,              (15) 

where Λ is known as the Tikhonov matrix [20]. The Λ term allows the imposition of prior 

knowledge on the solution α. In our case, we can exploit the approach that the pixels within 

the window determined by the motion vector of block 1( , )t k lB  which are the most similar 

from the target pixel should be given larger weight than ones which are the most dissimilar. 

Therefore, we propose the diagonal Λ in the form of 

1 1 1 2 12 2 2
( , , , )t t t Ndiag      Λ B c B c B c ,           (16) 

where ci (i = 1…N) is column vector of matrix Ct-2. With this structure, Λ penalizes weights 

of large magnitude assigned to the pixels which have a significant distance from the target 

pixel. For the block 1( , )t k lB , then, the MAAR coefficients α can be calculated directly by the 

usual Tikhonov solution,  

T T 1 T

2 2 2 1( )t t t t 

    α C C Λ Λ C B ,                      (17) 

where we use μ = 1.5 from this point on. 

After computing MAAR coefficients of each block in WZ frame Xt, the interpolation is 

performed block by block. Whereas block edges may not always be consistent with the 

heterogeneous object edges, and thus block effects are usually perceived in regions where 
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one block has a significantly different motion compared with its neighbors. In order to 

reduce block effects, the overlapped block is introduced to perform interpolation. As 

illustrated in Fig. 6, for each b×b block in Xt, we enlarge the block size to 2b×2b and 

compute MAAR coefficients of the enlarged block. When interpolating the SI of Xt, the four 

region A, B,C and D in each enlarged block overlap the neighboring blocks, e.g. the region A 

overlaps the top left four neighboring blocks V1, V2,V3 and V4. Therefore, each pixel in the 

enlarged block has the four candidate estimates, and we get the final pixel value by 

uniformly averaging the four candidate estimates. Another advantage of using the overlapped 

block is that it can reduce the bad effect of over-fitting due to increasing the number of 

training pixel samples when computing MAAR coefficients. 

A B

C D

b

2b

V1 V2

V3 V4

 

Fig. 6. Illustration of overlapped block 

In addition to using forward derivation to calculate the MAAR coefficients, a backward 

derivation can also be performed to compute the MAAR coefficients. The backward 

derivation comprises the following steps. Firstly, the optimal backward MAAR coefficients β 

for interpolate 
2( , )t k lB  as the linear combination pixels in 1( , )t k lB  can be derived by the 

way similar to the forward derivation case. Secondly, we exploit the centrosymmetric 

property between the forward derivation and backward derivation proposed in [8] to derive 

another approximated forward MAAR coefficient set to predict ( , )t k lB , that is,  

( , ) ( , )i j i j   β β .                           (18) 

Here β’(i,j) is the corresponding rearranged forward coefficient from frame Xt-2 to frame Xt-1. 

Finally, replacing α(i,j) with β’(i,j) in Eq. (11), we can get another Yt(m,n). Note that the 

overlapped block is still used to interpolate the SI. In order to fully capture the different 

properties of forward and backward derivation based on MAAR model, the final SI is 

obtained by uniformly averaging the two results of forward and backward derivation. 

5. Experimental Results and Analysis 

We have conducted various experiments in this section to evaluate the performance of the 

proposed CS based WZ codec using MAAR model based SI generation. The two CIF@30Hz 

video sequences Foreman and Bus are selected as the test sequences and the key frames of 

the test sequences are encoded by the intra-frame encoder in H.264/AVC reference software 

version JM 12.4. In the first subsection, the MAAR model based SI extrapolation 
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performance is compared with other existing methods. In the second subsection, we evaluate 

the correction capability of the proposed CS based WZ codec. In the last subsection, we 

study the rate-distortion performance of the proposed low-delay DVC systems. 

5.1 Evaluation of SI 

In order to evaluate our MAAR model based SI generation (MAAR_avg), we use the two 

continuous key frames to interpolate the SI and the QPs of the key frames are set to be 28. 

The comparison group includes two other SI extrapolation methods: conventional 

motion-compensated extrapolation (MCE) proposed by [7] and AR model with the 

probability based fusion (AR_Fusion) proposed by [8]. Note that AR_Fusion represents the 

fusion results by applying the fusion method on the interpolation by forward derivation, the 

interpolation by backward derivation and the conventional MCE, and the block size b of the 

above three methods is set to be 8, and R represents the radius of AR and MAAR models 

used to generate the SI for the corresponding sequence.  

       

(a)                 (b)                 (c)                (d) 

Fig.7. Results of SI extrapolation for Foreman (13th frame). (a) Original; (b) MCE, PSNR = 27.44 

dB; (c) AR_Fusion, R = 2, PSNR = 29.34 dB; (d) MAAR_avg, R = 2, PSNR = 29.97 dB. 

    

(a)                   (b)                 (c)                  (d) 

Fig.8. Results of SI extrapolation for Bus (18th frame). (a) Original; (b) MCE, PSNR = 20.19 dB; (c) 

AR_Fusion, R = 1, PSNR = 24.58 dB; (d) MAAR_avg, R = 1, PSNR = 25.83 dB. 

The SI quality comparison is shown in Figs. 7-8 for the CIF sequence Foreman and Bus. 

Firstly, we observe 13th frame of Foreman as shown in Fig. 7. It can be seen from Fig. 7(b) 
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that the SI estimated by MCE contains many cracks. This is main reason that the pixels in 

uncovered areas are predicted by local spatial interpolation. In Fig. 7(c), the block effects 

(highlighted in all red circles) and spoiled points caused by over-fitting (highlighted in 

bottom left and right red circles) appear in edges of object, while the proposed MAAR_avg 

method recovers them gracefully. Besides, when MAAR_avg is used, the PSNR gain can be 

up to 2.53 dB and 0.63 dB compared to the MCE and AR_Fusion. Therefore, depending on 

the superiority that the reasonable regularization on MAAR coefficients and overlapped 

block interpolation, our MAAR model based SI extrapolation can effectively reduce block 

effects and bad effects caused by over-fitting. Secondly, for 18th frame of Bus as shown in 

Fig. 8, the apparent errors in the “barrier” and cracks can be observed in the SI predicted by 

MCE as shown in Fig. 8(b). For the SI interpolated by AR_Fusion in Fig. 8(c), the 

inaccurate motion field leads to object displacement (highlighted in all red circles), however, 

the proposed MAAR_avg effectively overcomes this problem and acquires a better 

subjective quality. In terms of objective evaluation, the MAAR_avg also gains up to 5.64 dB 

and 1.25 dB over MCE and AR_Fusion. These can verity that our MAAR model can obtain 

the more accurate motion field than MCE and AR model. 

5.2 Evaluation of WZ Codec 

To better illustrate the performance of our proposed CS based WZ codec, we present the 

PSNR of each decoded WZ frame using the above-mentioned SI generations in Fig. 9, where 

the QPs of the key frames are set to be 28. The WZ frame frequency is set to one WZ frame 

every two frames and the first WZ frame is encoded by H.264/AVC intra-frame encoder in 

order to derive the motion information of the second WZ frame for its SI generation. It is 

noted that the block size b of SI generations is set to be 8, CS measurements K required once 

and the upper limit Mupper of each block is 5 and 35, and control factor λ, error tolerance ε, 

termination threshold Tol and maximum number of iterations smax are respectively set to be 

0.6, 0.5, 0.001 and 200 for CS reconstruction. It can be seen that when our proposed WZ 

codec is applied, the PSNR of each SI gets improved. Among the three SI generation 

methods, the MCE obtains the most significant PSNR gain, since our WZ codec has 

high-efficient correction capability and can substantially raise the quality of SI generated by 

the poorer method. With the improved quality of SI, although the PSNR gain has tapered off, 

the bit rate is decreased, as shown in Table 2. This is the main reason that our WZ codec can 

adaptively control the bit rate according to the varying SI quality. If the SI has lots of errors, 

our WZ codec will transmit the more bits to correct them, otherwise it reduce the bit rate to 

alleviate the burden of channel.  

Table 2 also summaries average PSNR of decoded WZ frames when the different QPs 

of key frames are used. We can observe that regardless of SI generations and QPs, the 

proposed CS based WZ codec can effectively improve the quality of SI, e.g. when 

AR_Fusion is used and QP is 26, the average PSNR gains can be up to 1.29 dB compared to 

the SI for Foreman. In addition, the CS based WZ codec associated with MAAR_avg also 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 2, Feb 2013                 381 

Copyright ⓒ 2013 KSII 

 

acquire the highest average PSNR and the lowest bit rate for the decoded WZ frames. 

Therefore, the low-delay DVC system composed by our WZ codec and SI generation 

MAAR_avg can get the best performance, since it elegantly integrates the better 

error-correction capability and high quality SI by flexibly controlling bit rate and efficiently 

improving prediction accuracy of SI generation. 

 

(a) 

 

(b) 

Fig. 9. PSNR of each decoded WZ frame by the proposed CS based WZ codec with different SI 

generations. (a) Foreman (R =2); (b) Bus (R = 1). 

Table 2. Evaluation of decoded WZ frames when various SI generations are used and the key frames 

are encoded under different QPs by H.264/AVC intra encoder. 

Foreman (R=2) Bus (R=1) 

SI 

generations 

PSNR of 

SI (dB) 

PSNR of 

WZ (dB) 

Bit Rate 

(kbps) 

SI 

generations 

PSNR of 

SI (dB) 

PSNR of 

WZ (dB) 

Bit Rate 

(kbps) 

QP = 26 QP = 26 

MCE 24.69 28.37 489.18 MCE 19.49 22.21 945.91 

AR_Fusion 28.16 29.45 387.18 AR_Fusion 22.36 23.62 918.26 
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MAAR_avg 28.92 30.55 276.13 MAAR_avg 24.13 24.56 726.79 

QP = 28 QP = 28 

MCE 24.51 28.33 492.80 MCE 19.50 22.25 952.04 

AR_Fusion 28.08 29.41 390.08 AR_Fusion 22.32 23.58 929.60 

MAAR_avg 28.90 30.65 268.74 MAAR_avg 24.09 24.54 739.76 

QP = 30 QP = 30 

MCE 24.47 28.39 498.82 MCE 19.53 22.21 961.92 

AR_Fusion 28.03 29.39 393.95 AR_Fusion 22.22 23.57 956.27 

MAAR_avg 28.75 30.62 284.47 MAAR_avg 24.00 24.52 759.51 

5.3 Rate-distortion Performances 

Fig. 10 compares the rate-distortion performances of the proposed CS based WZ codec with 

various SI generations and the intra coded results of H.264/AVC reference software version 

JM 12.4. It is noted that we only consider the even frames. From Fig. 10, it is observed that 

our MAAR model obtains the higher performance than the two other SI generations when 

using CS based WZ codec. In addition, although the CS based WZ codec have inferior 

performance compared with H.264/AVC intra encoder at high bit rates, the proposed MAAR 

model is able to reduce the gap between them and even superior to H.264/AVC intra encoder 

at low bit rates. This is because the propose MAAR interpolation has the superior ability of 

predicting the future data based on its accurate motion field and reasonable regularization on 

the overlapped block interpolation coefficients. Therefore, the DVC system composed of CS 

based WZ codec and MAAR based SI generation is desirable for low latency cases. 

  

(a)                                     (b) 

Fig. 10. Rate-distortion curves for H.264/AVC intra and the proposed CS based WZ codec with 

various SI generations. (a) Foreman; (b) Bus. 

6. Conclusions 

In this paper, we propose CS based WZ codec and the MAAR based SI generation in 

low-delay DVC. In the proposed WZ codec, different from the conventional WZ codec, the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 2, Feb 2013                 383 

Copyright ⓒ 2013 KSII 

 

channel coding is replaced by block based CS to correct the errors existing in the SI. At the 

WZ encoder side, the WZ frame is divided into small blocks and their low and medium 

frequency DCT coefficients are sampled with the same Gaussian measurement matrix. In 

order to effectively improve the quality of SI, a scheme for correcting errors in the SI is 

proposed at decoder. Firstly, depending on the estimated virtual correlation channel, when 

some blocks containing a certain amount of errors in SI are detected and a requirement is 

send to the encoder through a feedback channel in the decoder, and corresponding CS 

measurements are transmitted from the encoder buffer to the decoder to correct these errors. 

Then, a CS reconstruction algorithm is proposed to recover errors by using CS 

measurements and crucial SI. To obtain high quality SI, we improve the AR model based SI 

generation and introduce MAAR model to refine the inaccurate motion field appearing in the 

AR model. Besides, in order to reduce block effects and bad effects of over-fitting in the AR 

model, Tikhonov regularization using the priori knowledge on similarity between the target 

pixel and the corresponding training pixel samples and the interpolation using the overlapped 

block are performed in our MAAR model. Simulation experiments show that our MAAR 

based SI generation achieves better results compared to other SI extrapolation methods in 

terms of both subjective and objective performance, and the proposed CS based WZ codec 

can effectively improve the quality of SI and obtain a good error correcting capability. 
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