• KSII Transactions on Internet and Information Systems
    Monthly Online Journal (eISSN: 1976-7277)

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

Vol. 15, No. 6, June 30, 2021
10.3837/tiis.2021.06.014, Download Paper (Free):

Abstract

With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.


Statistics

Show / Hide Statistics

Statistics (Cumulative Counts from December 1st, 2015)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article

[IEEE Style]
Q. Yang, X. Wang, J. Zheng, W. Ge, M. Bai and F. Jiang, "LSTM Android Malicious Behavior Analysis Based on Feature Weighting," KSII Transactions on Internet and Information Systems, vol. 15, no. 6, pp. 2188-2203, 2021. DOI: 10.3837/tiis.2021.06.014.

[ACM Style]
Qing Yang, Xiaoliang Wang, Jing Zheng, Wenqi Ge, Ming Bai, and Frank Jiang. 2021. LSTM Android Malicious Behavior Analysis Based on Feature Weighting. KSII Transactions on Internet and Information Systems, 15, 6, (2021), 2188-2203. DOI: 10.3837/tiis.2021.06.014.