test
server time: root: http://itiis.org
current_path: /journals/tiis/digital-library/21840
current_url: http://itiis.org/journals/tiis/digital-library/21840
Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding
  • KSII Transactions on Internet and Information Systems
    Monthly Online Journal (eISSN: 1976-7277)

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding


Abstract

Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.


Statistics

Show / Hide Statistics

Statistics (Cumulative Counts from December 1st, 2015)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article

[IEEE Style]
S. Huang, D. Huang and M. A. Khuhroa, "Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding," KSII Transactions on Internet and Information Systems, vol. 12, no. 8, pp. 3769-3789, 2018. DOI: 10.3837/tiis.2018.08.012.

[ACM Style]
Shaonian Huang, Dongjun Huang, and Mansoor Ahmed Khuhroa. 2018. Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding. KSII Transactions on Internet and Information Systems, 12, 8, (2018), 3769-3789. DOI: 10.3837/tiis.2018.08.012.