test
server time: root: http://itiis.org
current_path: /journals/tiis/digital-library/20719
current_url: http://itiis.org/journals/tiis/digital-library/20719
Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective
  • KSII Transactions on Internet and Information Systems
    Monthly Online Journal (eISSN: 1976-7277)

Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective

Vol. 9, No. 1, January 30, 2015
10.3837/tiis.2015.01.028, Download Paper (Free):

Abstract

In this modern era of technology and information, e-learning approach has become an integral part of teaching and learning using modern technologies. There are different variations or classification of e-learning approaches. One of notable approaches is Personal Learning Environment (PLE). In a PLE system, the contents are presented to the user in a personalized manner (according to the users needs and wants). The problem arises when a new user enters the system, and due to the lack of information about the new users needs and wants, the system fails to recommend him/her the personalized e-learning contents accurately. This phenomenon is known as cold-start problem. In order to address this issue, existing researches propose different approaches for recommendation such as preference profile, user ratings and tagging recommendations. In this research paper, the implementation of a novel interaction-based approach is presented. The interaction-based approach improves the recommendation accuracy for the new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for the new user, both implicitly and explicitly, thus solving new-user cold-start problem. The result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1-measure.


Statistics

Show / Hide Statistics

Statistics (Cumulative Counts from December 1st, 2015)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article

[IEEE Style]
S. M. Ali, I. Ghani and M. S. A. Latiff, "Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective," KSII Transactions on Internet and Information Systems, vol. 9, no. 1, pp. 446-465, 2015. DOI: 10.3837/tiis.2015.01.028.

[ACM Style]
Syed Mubarak Ali, Imran Ghani, and Muhammad Shafie Abd Latiff. 2015. Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective. KSII Transactions on Internet and Information Systems, 9, 1, (2015), 446-465. DOI: 10.3837/tiis.2015.01.028.